Nuklearmedizin 2002; 41(04): 191-196
DOI: 10.1055/s-0038-1623895
Original Article
Schattauer GmbH

1-123-Iodo-α-methyl tyrosine SPECT in non-parenchymal brain tumours

I-123-Iod-α-methyl-tyrosinSPECT nicht-parenchymaler Hirntumoren
P. Matheja
1   Departments of Nuclear Medicine (Head: Prof. Dr. Dr. O. Schober)
,
M. Weckesser
1   Departments of Nuclear Medicine (Head: Prof. Dr. Dr. O. Schober)
,
Ch. Rickert
3   Institute of Neuropathology (Head: Prof. Dr. W. Paulus), University Hospital Münster, Germany
,
Ch. Franzius
1   Departments of Nuclear Medicine (Head: Prof. Dr. Dr. O. Schober)
,
St. Palkovic
2   Neurosurgery (Head: Prof. Dr. H. Wassmann)
,
B. Riemann
1   Departments of Nuclear Medicine (Head: Prof. Dr. Dr. O. Schober)
,
O. Schober
1   Departments of Nuclear Medicine (Head: Prof. Dr. Dr. O. Schober)
› Author Affiliations
Further Information

Publication History

Received: 05 November 2001

10 January 2002

Publication Date:
11 January 2018 (online)

Summary

Purpose: Scintigraphy using I-123-iodo-α-methyl tyrosine (IMT) is useful in the preoperative characterization of gliomas, in detecting recurrent glioma and in the biological re-evaluation of residual or recurrent tumours. A systematic evaluation of non-parenchymal brain tumours has not yet been performed. The aim of the present study was to evaluate IMT SPECT in the management of intracerebral metastases and lymphomas. Patients and methods: IMT uptake was analyzed in 31 patients with 28 metastases of extracerebral solid tumours and 7 cerebral lymphomas. Histology revealed high grade lymphomas, melanomas, and carcinomas of the following origin: lung, unknown primary, breast, colon, renal cell, ovary, vagina, frontal sinus. IMT uptake was quantified as ratio between maximal tumour accumulation and average uptake in the contralateral hemisphere. Results: All tumours except two renal cell and one small cell lung carcinoma metastases accumulated IMT (91%). The highest IMT uptake was found in a metastasis of lung carcinoma. IMT uptake was highly variable and was similar in primary and in recurrent tumours. Conclusion: Significant accumulation of IMT is seen in the majority of tumours, so that this technique might be helpful for the management of cerebral metastases and lymphomas.

Zusammenfassung

Ziel: Die Szintigraphie mit I-123-Iod-α-methyl-tyrosin (IMT) ist bei der präoperativen Charakterisierung von Gliomen, der Erkennung von Gliomrezidiven und bei der biologischen Evaluation residueller oder rezidivierender Tumoren nützlich. Eine systematische Analyse der nichtparenchymatösen Hirntumoren wurde bisher nicht durchgeführt. Das Ziel dieser Studie war es, die IMTSPECT beim Management intrazerebraler Metastasen und Lymphome zu analysieren. Patienten und Methoden: Die IMT-Aufnahme wurde bei 31 Patienten mit 28 Metastasen solider Tumoren und 7 zerebralen Lymphomen untersucht. Die histologische Untersuchung ergab hochgradig maligne Lymphome, Melanome und Karzinome folgender Herkunft: Lunge, unbekannter Primärtumor, Mamma, Kolon, Niere, Ovar, Vagina und Sinus frontalis. Die IMT-Aufnahme wurde als Quotient zwischen maximaler Tumoranreicherung und durchschnittlicher Aufnahme der kontralateralen Hemisphäre quantifiziert. Ergebnisse: Alle Tumoren mit Ausnahme zweier Nierenzellkarzinommetastasen und einer Metastase eines kleinzelligen Bronchialkarzinoms reicherten IMT an (91%). Die höchste Aufnahme wurde in einer Bronchialkarzinommetastase gefunden. Die IMT-Aufnahme war sehr variabel. Zwischen Primärtumoren und Rezidiven war sie vergleichbar. Schlussfolgerung: Die Tumoren reichen signifikant IMT an, sodass diese Methode möglicherweise beim Management zerebraler Metastasen und Lymphome hilfreich ist.

 
  • References

  • 1 Bader JB, Samnick S, Moringlane JR. et al. Evaluation of l-3-[123I]iodo-alpha-methyltyrosine SPET and [18F]fluorodeoxyglucose PET in the detection and grading of recurrences in patients pretreated for gliomas at follow-up: a comparative study with stereotactic biopsy. Eur J Nucl Med 1999; 26: 144-51.
  • 2 Biersack HJ, Coenen HH, Stöcklin G. et al. Imaging of brain tumors with L-3-[123I]iodo-alpha-methyl tyrosine and SPECT. J Nucl Med 1989; 30: 110-2.
  • 3 Biersack HJ, Grünwald F, Kropp J. Single photon emission computed tomography imaging of brain tumors. Semin Nucl Med 1991; 21: 2-10.
  • 4 Chang LT. A method for attenuation correction in radionuclide computed tomography. IEEE Trans Nucl Sci 1978; 2: 2780-9.
  • 5 Flamen P, Bernheim N, Deron P. et al. Iodine-123 alpha-methyl-l-tyrosine single-photon emission tomography for the visualization of head and neck squamous cell carcinomas. Eur J Nucl Med 1998; 25: 177-81.
  • 6 Franzius C, Kopka K, van Valen F. et al. Characterization of 3-[123I]iodo-L-a-methyl tyrosine (123I-IMT) Transport into human Ewing’s sarcoma cells in vitro. Nucl Med Biol 2001; 28: 123-8.
  • 7 Griffeth LK, Rich KM, Dehdashti F. et al. Brain metastases from non-central nervous system tumors: evaluation with PET. Radiology 1993; 186: 37-44.
  • 8 Gupta NC, Nicholson P, Bloomfield SM. FDGPET in the staging work-up of patients with suspected intracranial metastatic tumors. Ann Surg 1999; 230: 202-6.
  • 9 Jager PL, Franssen EJ, Kool W. et al. Feasibility of tumor imaging using L-3-[iodine-123]-iodo-alpha-methyl-tyrosine in extracranial tumors. J Nucl Med 1998; 39: 1736-43.
  • 10 Jaszczak RJ, Greer KL, Floyd Jr CE. et al. Improved SPECT quantification using compensation for scattered photons. J Nucl Med 1984; 25: 893-900.
  • 11 Kuikka JT, Tenhunen-Eskelinen M, Jurvelin J. et al. Physical performance of the Siemens MultiSPECT 3 gamma camera. Nucl Med Commun 1993; 14: 490-7.
  • 12 Kuwert T, Morgenroth C, Woesler B. et al. Uptake of iodine-123-alpha-methyl tyrosine by gliomas and non- neoplastic brain lesions. Eur J Nucl Med 1996; 23: 1345-53.
  • 13 Kuwert T, Morgenroth C, Woesler B. et al. Influence of size of regions of interest on the measurement of uptake of 123I-alpha-methyltyrosine by brain tumours. Nucl Med Commun 1996; 17: 609-15.
  • 14 Kuwert T, Probst-Cousin S, Woesler B. et al. Iodine-123-alpha-methyl tyrosine in gliomas: correlation with cellular density and proliferative activity. J Nucl Med 1997; 38: 1551-5.
  • 15 Kuwert T, Woesler B, Morgenroth C. et al. Diagnosis of recurrent glioma with SPECT and iodine-123-alpha-methyl tyrosine [published erratum appears in J Nucl Med 1998; 39: 574]. J Nucl Med 1998; 39: 23-7.
  • 16 Langen KJ, Coenen HH, Roosen N. et al. SPECT studies of brain tumors with L-3-[123I] iodo-alpha-methyl tyrosine: comparison with PET, 123IMT and first clinical results. J Nucl Med 1990; 31: 281-6.
  • 17 Langen KJ, Roosen N, Coenen HH. et al. Brain and brain tumor uptake of L-3-[123I]iodo-alpha-methyl tyrosine: competition with natural L-amino acids. J Nucl Med 1991; 32: 1225-9.
  • 18 Langen KJ, Ziemons K, Kiwit JC. et al. 3-[123I]iodo-alpha-methyltyrosine and [methyl-11C]-L-methionine uptake in cerebral gliomas: a comparative study using SPECT and PET. J Nucl Med 1997; 38: 517-22.
  • 19 Matheja P, Rickert C, Weckesser M. et al. Sequential scintigraphic strategy for the differentiation of brain tumours. Eur J Nucl Med 2000; 27: 550-8.
  • 20 Mosskin M, von Holst H, Bergstrom M. et al. Positron emission tomography with 11C-methi-onine and computed tomography of intracranial tumours compared with histopathologic examination of multiple biopsies. Acta Radiol 1987; 28: 673-81.
  • 21 O’Doherty M, Barrington SF, Campbell M. et al. PET scanning and the human immunodeficiency virus-positive patient. J Nucl Med 1997; 38: 1575-83.
  • 22 Ogawa T, Kanno I, Hatazawa J. et al. Methionine PET for follow-up of radiation therapy of primary lymphoma of the brain. Radiographics 1994; 14: 101-10.
  • 23 Pietrzyk U, Herholz K, Fink G. et al. An interactive technique for three-dimensional image registration: validation for PET, SPECT, MRI and CT brain studies. J Nucl Med 1994; 35: 2011-8.
  • 24 Riemann B, Stögbauer F, Kopka K. et al. Kinetics of 3-[(123)I]iodo-l-alpha-methyltyrosine transport in rat C6 glioma cells. Eur J Nucl Med 1999; 26: 1274-8.
  • 25 Roelcke U, Radu EW, von Ammon K. et al. Alteration of blood-brain barrier in human brain tumors: comparison of [18F]fluorodeoxyglucose, [11C]methionine and rubidium-82 using PET. J Neurol Sci 1995; 132: 20-7.
  • 26 Steinert H, Böni R, Huch-Böni RA. et al. [123I-alpha-methyltyrosine scintigraphy in malignant melanoma]. Nuklearmedizin 1997; 36: 36-41.
  • 27 Tisljar U, Kloster G, Ritzl F. et al. Accumulation of radioiodinated L-alpha-methyltyrosine in pancreas of mice: concise communication. J Nucl Med 1979; 20: 973-6.
  • 28 Weber W, Bartenstein P, Gross MW. et al. Fluorine-18-FDG PET and iodine-123-IMT SPECT in the evaluation of brain tumors. J Nucl Med 1997; 38: 802-8.
  • 29 Weckesser M, Matheja P, Rickert C. et al. Evaluation of the extension of cerebral gliomas by scintigraphy. Strahlenther Onkol 2000; 176: 180-5.
  • 30 Woesler B, Kuwert T, Morgenroth C. et al. Noninvasive grading of primary brain tumours: results of a comparative study between SPET with 123I-alpha-methyl tyrosine and PET with 18F-deoxyglucose. Eur J Nucl Med 1997; 24: 428-34.