Nervenheilkunde 2003; 22(03): 116-121
DOI: 10.1055/s-0038-1624386
Original- und Übersichtsarbeiten/Original and Review Articles
Schattauer GmbH

Molekulare Variabilität der monogenen peripheren Neuropathien

Molecular variability of monogenic peripheral neuropathies
B. Rautenstrauß
1   Friedrich-Alexander Universität Erlangen-Nürnberg, Institut für Humangenetik (Direktor: Prof. Dr. med. André Reis)
› Author Affiliations
Further Information

Publication History

Publication Date:
15 January 2018 (online)

Zusammenfassung

Die Charcot-Marie-Tooth-(CMT-)Erkrankungen, synonym zu den hereditären motorischen und sensiblen Neuropathien (HMSN), umfassen eine klinisch und genetisch heterogene Gruppe von Erkrankungen des peripheren Nervensystems. Traditionell wird zwischen demyelinisierender (CMT1, Dejerine-Sottas-Syndrom [DSS] und CMT4) sowie axonaler Form (CMT2) unterschieden. Bei etwa 70% der Patienten mit demyelinisierender Form liegt eine 1,4 Mb große Tandem-Duplikation im Chromosom 17p11.2-12 (CMT Typ 1A) vor. Die reziproke Deletion ist die häufigste Ursache der familiären rekurrierenden Neuropathie (HNPP, auch tomakulöse Neuropathie genannt). Die beiden Erkrankungen werden auf einen jeweils entgegengesetzten Gendosiseffekt des peripheren Myelinprotein-22-Gens (PMP22) zurückgeführt. Die intensive Forschung der vergangenen 11 Jahre hat zur Kenntnis von etwa 10 ursächlichen Genen und über 30 assoziierten Genorten geführt. Die Kenntnisse über die vielfältigen ursächlichen Gene haben auch zu einem differenzierteren Verständnis der häufig gemischt axonaldemyelinisierenden Phänotypen geführt. Die Analyse dieser Gene und Proteine wird zu weiteren Einsichten in die molekulare und zelluläre Basis des neuronalen Metabolismus und damit der peripheren Neuropathien führen.

Summary

Charcot-Marie-Tooth (CMT) diseases, also called hereditary motor and sensory neuropathy (HMSN), comprise a clinically as well as genetically heterogeneous group of diseases of the peripheral nervous system. The different subgroups are traditionally differentiated in demyelinating (CMT1, Dejerine Sottas Syndrome [DSS] and CMT4) and axonal (CMT2) types. About 70% of patients of a demyelinating neuropathy carry a 1.4 Mb tandem duplication in chromosome 17p11.2-12 (CMT type 1A). A reciprocal deletion leads to the hereditary neuropathy with liability to pressure palsies (HNPP, synonymous tomaculous neuropathy). Both diseases are due to a vice-versa gene dosage effect of the peripheral myelin protein 22 (PMP22) gene. The intensive research efforts of the last 11 years revealed about 10 genes and more as 30 associated loci. This growing knowledge about the associated genes leads simultanously to a more differentiated understanding of the often intermingled demyelinating-axonal phenotypes. The analysis of these genes and the encoded proteins will lead to additional insights into the molecular and cellular basis of neuronal metabolism and peripheral neuropathies.

 
  • Literatur

  • 1 Charcot J, Marie P. Sur une forme particulière d´atrophie musculaire progressive, souvent familiale, débutant par les pieds et les jambes et atteignant plus tard les mains. Revue de Médicine 1886; 06: 97-138.
  • 2 Tooth H. The peroneal type of progressive muscular atrophy. London: HK Lewis & Co; 1886: 43.
  • 3 Dejerine J, Sottas J. Sur la névrite interstitielle, hypertrophique et progressive de l’enfance. Comptes Rendus des Séances de la Société de Biologie et de ses filiales 1893; 45: 63-96.
  • 4 De Jong JGY. Over families met hereditaire dispositie tot het optreden van neuritiden, gecorreleerd met migraine. Psychiatrische en neurologische Blaten 1947; 50: 60-76.
  • 5 Dyck P, Chance P, Lebo R, Carney J. Hereditary motor and sensory neuropathies. In: Dyck P, Thomas P, Griffin J, Low P, Poduslo J. (eds.). Peripheral neuropathies. Philadelphia: Saunders; 1993: 1094-136.
  • 6 Lupski JR, de Oca-Luna RM, Slaugenhaupt S. et al. DNA duplication associated with Charcot-Marie-Tooth disease type 1A. Cell 1991; 66: 219-32.
  • 7 Raeymaekers P, Timmerman V, Nelis E. et al. Duplication in chromosome 17p11.2 in Charcot-Marie-Tooth neuropathy type 1a (CMT 1a). The HMSN Collaborative Research Group.The HMSN Collaborative Research Group. Neuromuscul Disord 1991; 01: 93-7.
  • 8 Suter U, Welcher AA, Ozcelik T. et al. Trembler mouse carries a point mutation in a myelin gene. Nature 1992; 356: 241-4.
  • 9 Nelis E, Timmerman V, De Jonghe P, Van Broeckhoven C, Rautenstrauss B. Molecular genetics and biology of inherited peripheral neuropathies: a fast-moving field. Neurogenetics 1999; 02: 137-48.
  • 10 Nelis E, Haites N, Van Broeckhoven C. Mutations in the peripheral myelin genes and associated genes in inherited peripheral neuropathies. Hum Mutat 1999; 13: 11-28.
  • 11 Berger P, Young P, Suter U. Molecular cell biology of Charcot-Marie-Tooth disease. Neurogenetics 2002; 04: 1-15.
  • 12 Lupski JR. Molecular genetics of Charcot-Marie-Tooth disease and related peripheral neuropathies. In: Jameson JL. (ed.). Textbook of molecular medicine. Cambridge (USA): Blackwell Scientific; 1996.
  • 13 Patel PI, Roa BB, Welcher AA. et al. The gene for the peripheral myelin protein PMP-22 is a candidate for Charcot-Marie-Tooth disease type 1A. Nat Genet 1992; 01: 159-65.
  • 14 Matsunami N, Smith B, Ballard L. et al. Peripheral myelin protein-22 gene maps in the duplication in chromosome 17p11.2 associated with Charcot-Marie-Tooth 1A. Nat Genet 1992; 01: 176-9.
  • 15 Valentijn LJ, Bolhuis PA, Zorn I. et al. The peripheral myelin gene PMP-22/GAS-3 is duplicated in Charcot-Marie-Tooth disease type 1A. Nat Genet 1992; 01: 166-70.
  • 16 Timmerman V, Nelis E, Van Hul W. et al. The peripheral myelin protein gene PMP-22 is contained within the Charcot-Marie-Tooth disease type 1A duplication. Nat Genet 1992; 01: 171-5.
  • 17 Chance PF, Alderson MK, Leppig KA. et al. DNA deletion associated with hereditary neuropathy with liability to pressure palsies. Cell 1993; 72: 143-51.
  • 18 Chance PF, Abbas N, Lensch MW. et al. Two autosomal dominant neuropathies result from reciprocal DNA duplication/deletion of a region on chromosome 17. Hum Mol Genet 1994; 03: 223-8.
  • 19 Hayasaka K, Himoro M, Sato W. et al. CharcotMarie-Tooth neuropathy type 1B is associated with mutations of the myelin P0 gene. Nat Genet 1993; 05: 31-4.
  • 20 Rautenstrauß B, Nelis E, Grehl H, Pfeiffer RA, Van Broeckhoven C. Identification of a de novo insertional mutation in P0 in a patient with a Déjérine-Sottas phenotype. Hum Mol Genet 1994; 03: 1701-2.
  • 21 Warner LE, Hilz MJ, Appel H. et al. Clinical phenotypes of different mpz (P0) mutations may include Charcot-Marie-Tooth type 1B, Dejerine-Sottas, and congenital hypomyelination. Neuron 1996; 17: 451-60.
  • 22 Bergoffen J, Scherer SS, Wang S. et al. Connexin mutations in X-linked Charcot-Marie-Tooth disease. Science 1993; 262: 2039-42.
  • 23 Warner LE, Mancias P, Butler IJ, Lupski JR. Mutations in the early growth response 2 (EGR2) gene are associated with hereditary myelinopathies. Nat Genet 1998; 18: 382-4.
  • 24 Bolino A, Muglia M, Conforti FL. et al. Charcot-Marie-Tooth type 4B is caused by mutations in the gene encoding myotubularinrelated protein-2. Nat Genet 2000; 25: 17-9.
  • 25 Kalaydjieva L, Gresham D, Gooding R. et al. N-myc downstream-regulated gene 1 is mutated in hereditary motor and sensory neuropathy-Lom. Am J Hum Genet 2000; 67: 47-58.
  • 26 Boerkoel CF, Takashima H, Stankiewicz P. et al. Periaxin mutations cause recessive DejerineSottas neuropathy. Am J Hum Genet 2001; 68: 325-33.
  • 27 Mersiyanova IV, Perepelov AV, Polyakov AV. et al. A new variant of Charcot-Marie-Tooth disease type 2 is probably the result of a mutation in the neurofilament-light gene. Am J Hum Genet 2000; 67: 37-46.
  • 28 Bomont P, Cavalier L, Blondeau F. et al. The gene encoding gigaxonin, a new member of the cytoskeletal BTB/kelch repeat family, is mutated in giant axonal neuropathy. Nat Genet 2000; 26: 370-4.
  • 29 Miura Y, Mardy S, Awaya Y. et al. Mutation and polymorphism analysis of the TRKA (NTRK1) gene encoding a high-affinity receptor for nerve growth factor in congenital insensitivity to pain with anhidrosis (CIPA) families. Hum Genet 2000; 106: 116-24.
  • 30 Cuesta A, Pedrola L, Sevilla T. et al. The gene encoding ganglioside-induced differentiationassociated protein 1 is mutated in axonal Charcot-Marie-Tooth type 4A disease. Nat Genet 2002; 30: 22-5.
  • 31 De Sandre-Giovannoli A, Chaouch M, Kozlov S. et al. Homozygous defects in LMNA, encoding lamin A/C nuclear-envelope proteins, cause autosomal recessive axonal neuropathy in human (Charcot-Marie-Tooth disorder type 2) and mouse. Am J Hum Genet 2002; 70: 726-36.
  • 32 Chance PF, Fischbeck KH. Molecular genetics of Charcot-Marie-Tooth disease and related neuropathies. Hum Mol Genet 1994; 03 Spec No: 1503-7.
  • 33 Vallat JM, Sindou P, Preux PM. et al. Ultrastructural PMP22 expression in inherited demyelinating neuropathies. Ann Neurol 1996; 39: 813-7.
  • 34 Fabbretti E, Edomi P, Brancolini C, Schneider C. Apoptotic phenotype induced by overexpression of wild-type gas3/PMP22: its relation to the demyelinating peripheral neuropathy CMT1A. Genes Dev 1995; 09: 1846-56.
  • 35 Zoidl G, Blass-Kampmann S, D’Urso D, Schmalenbach C, Muller HW. Retroviral-mediated gene transfer of the peripheral myelin protein PMP22 in Schwann cells: modulation of cell growth. Embo J 1995; 14: 1122-8.
  • 36 Hanemann CO, Rosenbaum C, Kupfer S, Wosch S, Stoegbauer F, Mueller H-W. Improved culture methods to expand Schwann cells with altered growth behaviour from CMT1A patients. Glia 1998; 23: 89-98.
  • 37 Niemann S, Sereda MW, Suter U, Griffiths IR, Nave KA. Uncoupling of myelin assembly and schwann cell differentiation by transgenic overexpression of peripheral myelin protein 22. J Neurosci 2000; 20: 4120-8.
  • 38 Naef R, Adlkofer K, Lescher B, Suter U. Aberrant protein trafficking in Trembler suggests a disease mechanism for hereditary human peripheral neuropathies. Genes Dev 1997; 09: 13-25.
  • 39 Young P, Suter U. Disease mechanisms and potential therapeutic strategies in Charcot-MarieTooth disease. Brain Res Brain Res Rev 2001; 36: 213-21.
  • 40 Notterpek L, Ryan MC, Tobler AR, Shooter EM. PMP22 accumulation in aggresomes: implications for CMT1A pathology. Neurobiol Dis 1999; 06: 450-60.
  • 41 Nelis E, Van Broeckhoven C. et al. Estimation of the mutation frequencies in Charcot-MarieTooth disease type 1 and hereditary neuropathy with liability to pressure palsies: a european collaborative study. Eur J Hum Genet 1996; 04: 25-33.
  • 42 Bruzzone R, White TW, Paul DL. Connections with connexins: the molecular basis of direct intercellular signaling. Eur J Biochem 1996; 238: 1-27.
  • 43 Abrams CK, Oh S, Ri Y, Bargiello TA. Mutations in connexin 32: the molecular and biophysical bases for the X-linked form of CharcotMarie-Tooth disease. Brain Res Brain Res Rev 2000; 32: 203-14.
  • 44 Warner LE, Garcia CA, Lupski JR. Hereditary peripheral neuropathies: clinical forms, genetics, and molecular mechanisms. Annu Rev Med 1999; 50: 263-75.
  • 45 Young P, Grote K, Kuhlenbaumer G. et al. Mutation analysis in Chariot-Marie Tooth disease type 1: point mutations in the MPZ gene and the GJB1 gene cause comparable phenotypic heterogeneity. J Neurol 2001; 248: 410-5.
  • 46 De Jonghe P, Timmerman V, Ceuterick C. et al. The Thr124Met mutation in the peripheral myelin protein zero (MPZ) gene is associated with a clinically distinct Charcot-Marie-Tooth phenotype. Brain 1999; 122: 281-90.
  • 47 Shapiro L, Doyle JP, Hensley P, Colman DR, Hendrickson WA. Crystal structure of the extracellular domain from P0, the major structural protein of peripheral nerve myelin. Neuron 1996; 17: 435-49.
  • 48 D’Urso D, Ehrhardt P, Mueller H-W. Peripheral myelin protein 22 and protein zero: a novel association in peripheral nervous system myelin. The Journal of Neuroscience 1999; 19: 3396-403.
  • 49 Carenini S, Neuberg D, Schachner M, Suter U, Martini R. Localization and functional roles of PMP22 in peripheral nerves of P0-deficient mice. Glia 1999; 28: 256-64.
  • 50 Gabreëls-Festen AA, Hoogendijk JE, Meijerink PH. et al. Two divergent types of nerve pathology in patients with different P0 mutations in Charcot-Marie-Tooth disease. Neurology 1996; 47: 761-5.
  • 51 Warner LE, Svaren J, Milbrandt J, Lupski JR. Functional consequences of mutations in the early growth response 2 gene (EGR2) correlate with severity of human myelinopathies. Hum Mol Genet 1999; 08: 1245-51.
  • 52 Warner LE, Mancias P, Butler IJ. et al. Mutations in the early growth response 2 (EGR2) gene are associated with hereditary myelinopathies. Nat Genet 1998; 18: 382-4.
  • 53 Timmerman V, De Jonghe P, Ceuterick C. et al. Novel missense mutation in the early growth response 2 gene associated with Dejerine-Sottas syndrome phenotype. Neurology 1999; 52: 1827-32.
  • 54 Baxter RV, Ben Othmane K, Rochelle JM. et al. Ganglioside-induced differentiation-associated protein-1 is mutant in Charcot-Marie-Tooth disease type 4A/8q21. Nat Genet 2002; 30: 21-2.
  • 55 De Jonghe P, Mersivanova I, Nelis E. et al. Further evidence that neurofilament light chain gene mutations can cause Charcot-Marie-Tooth disease type 2E. Ann Neurol 2001; 49: 245-9.
  • 56 Brownlees J, Ackerley S, Grierson AJ. et al. Charcot-Marie-Tooth disease neurofilament mutations disrupt neurofilament assembly and axonal transport. Hum Mol Genet 2002; 11: 2837-44.
  • 57 Zhao C, Takita J, Tanaka Y. et al. Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell 2001; 105: 587-97.
  • 58 Guenard V, Schweitzer B, Flechsig E. et al. Effective gene transfer of lacZ and P0 into Schwann cells of P0-deficient mice. Glia 1999; 25: 165-78.
  • 59 Colby J, Nicholson R, Dickson KM. et al. PMP22 carrying the trembler or trembler-J mutation is intracellularly retained in myelinating Schwann cells. Neurobiol Dis 2000; 07: 561-573.
  • 60 Haase G, Kennel P, Pettmann B. et al. Gene therapy of murine motor neuron disease using adenoviral vectors for neurotrophic factors. Nat Med 1997; 03: 429-36.
  • 61 Haase G, Pettmann B, Vigne E, CastelnauPtakhine L, Schmalbruch H, Kahn A. Adenovirus-mediated transfer of the neurotrophin-3 gene into skeletal muscle of pmn mice: therapeutic effects and mechanisms of action. J Neurol Sci 1998; 160 (Suppl. 01) S97-105.
  • 62 The BDNF Study Group. A controlled trial of recombinant methionyl human BDNF in ALS (Phase III). Neurology 1999; 52: 1427-33.
  • 63 Schmid CD, Stienekemeier M, Oehen S. et al. Immune deficiency in mouse models for inherited peripheral neuropathies leads to improved myelin maintenance. J Neurosci 2000; 20: 729-35.
  • 64 Dyck PJ, Swanson CJ, Low PA, Bartleson JD, Lambert EH. Prednisone-responsive hereditary motor and sensory neuropathy. Mayo Clinic Proceedings 1982; 57: 239-46.
  • 65 Vial T, Descotes J. Clinical toxicity of the interferons. Drug Saf 1994; 10: 115-50.
  • 66 Victor M, Sieb JP. Myopathies due to drugs, toxins, and nutritional deficiencies. In: Engel AG, Franzinin-Armstrong C. (eds.). Myology. New York: Mcgraw-Hill; 1994: 1697-725.