Schlaf 2015; 04(04): 180-187
DOI: 10.1055/s-0038-1626147
Review
Schattauer GmbH

Uhrengene und ihre Bedeutung für Schlafen und Wachen

HENRIK OSTER
1   AG Chronophysiologie Medizinische Klinik I Universität zu Lübeck Ratzeburger Allee 160 23538 Lübeck Tel. 0451/500-3963 Fax 0451/500-5639, Email: henrik.oster@uksh.de
› Author Affiliations
Further Information

Publication History

Publication Date:
12 February 2018 (online)

Zirkadiane Uhren regulieren Tagesrhythmen in Physiologie und Verhalten. Ein zentraler Schrittmacher im Hypothalamus koordiniert ein Netzwerk von Uhren untereinander und mit der externen Zeit. Dieses Uhrennetzwerk bestimmt die Zeit von Ruhe- und Wachphasen und reguliert das Müdigkeitsempfinden nach längerem Wachen. Neue Studien zeigen zudem, dass die Kommunikation zwischen Uhren und Schlaf in beide Richtungen erfolgt – mit Konsequenzen insbesondere für den Energiestoffwechsel.

 
  • Literatur

  • 1 Harmer SL, Panda S, Kay SA. Molecular bases of circadian rhythms. Annu Rev Cell Dev Biol 2001; 17: 215-253.
  • 2 Mohawk JA, Green CB, Takahashi JS. Central and peripheral circadian clocks in mammals. Annu Rev Neurosci 2012; 35: 445-462.
  • 3 Foster RG, Hankins MW. Circadian vision. Curr Biol 2007; 17 (17) R746-751.
  • 4 Waterhouse J, Reilly T, Atkinson G, Edwards B. Jet lag: trends and coping strategies. Lancet 2007; 369 (9567) 1117-1129. PubMed PMID: (PMID: 17398311)
  • 5 Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annual review of physiology 2010; 72: 517-549.
  • 6 Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 2000; 14 (23) 2950-2961.
  • 7 Chaix A, Zarrinpar A, Miu P, Panda S. Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges. Cell Metab 2014; 20 (06) 991-1005.
  • 8 Barclay JL, Tsang AH, Oster H. Interaction of central and peripheral clocks in physiological regulation. Progress in brain research 2012; 199: 163-81.
  • 9 Partch CL, Green CB, Takahashi JS. Molecular architecture of the mammalian circadian clock. Trends Cell Biol 2014; 24 (02) 90-99.
  • 10 Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci U S A 2014; 111 (45) 16219-16224.
  • 11 Landgraf D, Shostak A, Oster H. Clock genes and sleep. Pflugers Arch 2012; 463 (01) 3-14.
  • 12 Tsang AH, Barclay JL, Oster H. Interactions between endocrine and circadian systems. J Mol Endocrinol 2014; 52 (01) R1-16.
  • 13 Pevet P, Challet E. Melatonin: both master clock output and internal time-giver in the circadian clocks network. Journal of physiology 2011; 105 (4–6) 170-182.
  • 14 Peirson S, Foster RG. Melanopsin: another way of signaling light. Neuron 2006; 49 (03) 331-339. PubMed PMID: (PMID: 16446137)
  • 15 Fonken LK, Nelson RJ. The effects of light at night on circadian clocks and metabolism. Endocr Rev 2014; 35 (04) 648-670.
  • 16 Leliavski A, Dumbell R, Ott V, Oster H. Adrenal Clocks and the Role of Adrenal Hormones in the Regulation of Circadian Physiology. J Biol Rhythms 2015; 30 (01) 20-34.
  • 17 Bertram R, Helena CV, Gonzalez-Iglesias AE, Tabak J, Freeman ME. A tale of two rhythms: the emerging roles of oxytocin in rhythmic prolactin release. J Neuroendocrinol 2010; 22 (07) 778-784.
  • 18 Espana RA, Plahn S, Berridge CW. Circadian-dependent and circadian-independent behavioral actions of hypocretin/orexin. Brain Res 2002; 943 (02) 224-236.
  • 19 Brandenberger G, Weibel L. The 24-h growth hormone rhythm in men: sleep and circadian influences questioned. J Sleep Res 2004; 13 (03) 251-255.
  • 20 Reinberg A, Lagoguey M. Circadian and circannual rhythms in sexual activity and plasma hormones (FSH, LH, testosterone) of five human males. Arch Sex Behav 1978; 7 (01) 13-30.
  • 21 Bass J. Circadian topology of metabolism. Nature 2012; 491 (7424) 348-356.
  • 22 Kovac J, Husse J, Oster H. A time to fast, a time to feast: the crosstalk between metabolism and the circadian clock. Mol Cells 2009; 28 (02) 75-80.
  • 23 Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, Ko CH. et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 2010; 466 (7306) 627-631.
  • 24 Shostak A, Meyer-Kovac J, Oster H. Circadian regulation of lipid mobilization in white adipose tissues. Diabetes. 2013 Feb 22.
  • 25 Paschos GK, Ibrahim S, Song WL, Kunieda T, Grant G, Reyes TM. et al. Obesity in mice with adipocyte-specific deletion of clock component Arntl. Nature medicine 2012; 18 (12) 1768-1777.
  • 26 Huang W, Ramsey KM, Marcheva B, Bass J. Circadian rhythms, sleep, and metabolism. The Journal of clinical investigation 2011; 121 (06) 2133-2141.
  • 27 Saper CB, Scammell TE, Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature 2005; 437 (7063) 1257-1263.
  • 28 Saper CB, Chou TC, Scammell TE. The sleep switch: hypothalamic control of sleep and wakefulness. Trends in neuro sciences 2001; 24 (12) 726-731.
  • 29 Nishino S, Ripley B, Overeem S, Lammers GJ, Mignot E. Hypocretin (orexin) deficiency in human narcolepsy. Lancet 2000; 355 (9197) 39-40.
  • 30 Takahashi JS, Hong HK, Ko CH, McDearmon EL. The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet 2008; 9 (10) 764-775.
  • 31 Katzenberg D, Young T, Finn L, Lin L, King DP, Takahashi JS. et al. A CLOCK polymorphism associated with human diurnal preference. Sleep 1998; 21 (06) 569-576.
  • 32 Takano A, Uchiyama M, Kajimura N, Mishima K, Inoue Y, Kamei Y. et al. A missense variation in human casein kinase I epsilon gene that induces functional alteration and shows an inverse association with circadian rhythm sleep disorders. Neuropsychopharmacology 2004; 29 (10) 1901-1909.
  • 33 Ebisawa T, Uchiyama M, Kajimura N, Mishima K, Kamei Y, Katoh M. et al. Association of structural polymorphisms in the human period3 gene with delayed sleep phase syndrome. EMBO Rep 2001; 2 (04) 342-346.
  • 34 Ralph MR, Menaker M. A mutation of the circadian system in golden hamsters. Science 1988; 241 (4870) 1225-1227.
  • 35 Gallego M, Eide EJ, Woolf MF, Virshup DM, Forger DB. An opposite role for tau in circadian rhythms revealed by mathematical modeling. Proc Natl Acad Sci 2006; 103 (28) 10618-10623.
  • 36 Toh KL, Jones CR, He Y, Eide EJ, Hinz WA, Virshup DM. et al. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 2001; 291 (5506) 1040-1043.
  • 37 Xu Y, Padiath QS, Shapiro RE, Jones CR, Wu SC, Saigoh N. et al. Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature 2005; 434 (7033) 640-644.
  • 38 Roenneberg T, Wirz-Justice A, Merrow M. Life between clocks: daily temporal patterns of human chronotypes. J Biol Rhythms 2003; 18 (01) 80-90.
  • 39 Roenneberg T, Kuehnle T, Pramstaller PP, Ricken J, Havel M, Guth A. et al. A marker for the end of adolescence. Current biology 2004; 14 (24) R1038-1039.
  • 40 Roenneberg T, Kantermann T, Juda M, Vetter C, Allebrandt KV. Light and the human circadian clock. Handbook of experimental pharmacology 2013; 217: 311-331.
  • 41 Salgado-Delgado R, Angeles-Castellanos M, Buijs MR, Escobar C. Internal desynchronization in a model of nightwork by forced activity in rats. Neuroscience 2008; 154 (03) 922-931.
  • 42 Barclay JL, Husse J, Bode B, Naujokat N, Meyer-Kovac J, Schmid SM. et al. Circadian desynchrony promotes metabolic disruption in a mouse model of shiftwork. PLoS One 2012; 7 (05) e37150.
  • 43 Herichova I. Changes of physiological functions induced by shift work. Endocr Regul 2013; 47 (03) 159-170.
  • 44 Chen Z, Yoo SH, Takahashi JS. Small molecule modifiers of circadian clocks. Cell Mol Life Sci 2013; 70 (16) 2985-2998.