Nervenheilkunde 2009; 28(10): 739-744
DOI: 10.1055/s-0038-1627147
Nuklearmedizinische Bildgebung
Schattauer GmbH

Radiotracer-Bildgebung zerebraler Azetylcholinrezeptoren bei demenziellen Erkrankungen

Neuroimaging of cerebral nicotinic acetylcholine receptors in dementia
K. Kendziorra
1   Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Leipzig AöR
,
P. M. Meyer
1   Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Leipzig AöR
,
O. Sabri
1   Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Leipzig AöR
› Author Affiliations
Further Information

Publication History

Eingegangen am: 06 June 2009

angenommen am: 08 June 2009

Publication Date:
19 January 2018 (online)

Zusammenfassung

Durch die Verfügbarkeit von Radiotracern, die selektiv an verschiedenen Subtypen nikotinischer Azetylcholinrezeptoren binden, können neue Erkenntnisse der pathophysiologischen Zusammenhänge des cholinergen Defizits und des Kognitionsverlustes bei Demenzen gewonnen werden. Mittels dieser neuen Radiotracer ergibt sich die Möglichkeit, neue spezifische Therapieansätze zu entwickeln und zu validieren. Bisher gibt es nur eine geringe Anzahl von Studien, die nikotinische Azetylcholinrezeptoren bei Demenz in vivo untersucht haben. Diese konnten eine Verminderung der Rezeptoren bei Patienten mit Alzheimer Demenz und bei Patienten mit leichten kognitiven Störungen nachweisen, die mit dem kognitiven Verlust korreliert ist. Die derzeit verfügbaren Radiotracer zeichnen sich durch eine relativ geringe zerebrale Anreicherung und eine langsame Kinetik aus, sodass ihre Verwendung aufgrund der langen Aufnahmezeiten für die klinische Routinepraxis eingeschränkt ist. Mehrere Arbeitsgruppen entwickeln zurzeit Radiotracer mit höherer zerebraler Aufnahme und schnellerer Kinetik, die für Frühdiagnose und Therapiekontrolle der Demenz besser eingesetzt werden könnten.

Summary

New insights into the pathophysiological interrelation between cholinergic deficits and cognitive decline in patients with dementia can be achieved with the new nicotinic acetylcholine receptor subtype selective radioligands. These allow to develop and validate specific therapeutic options. Up to now, only few studies have imaged nicotinic acetylcholine receptors in vivo in patients with dementia. These studies could demonstrate reductions in receptor availability in Alzheimer’s disease and mild cognitive impairment that correlate with cognitive decline. The currently available radiotracers are limited due to slow and relative low binding, making long acquisition times necessary that limit applications in a routine clinical setting. Research groups are currently developing novel radiotracers with higher brain uptake and faster kinetics that harbour the potential of improved early diagnosis and therapy control in dementia.

 
  • Literatur

  • 1 Bickel H. Dementia and Alzheimer’s disease: An estimate of prevalent and incident cases in Germany. Gesundheitswesen 2000; 62: 211-8.
  • 2 Kessler H, Supprian T, Rosler M. Antidementive pharmacotherapy – an update. Psychopharmakotherapie 2003; 10: 132-40.
  • 3 Davies P, Maloney AJ. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 1976; 2: 1403.
  • 4 Perry EK. et al. Neurotransmitter enzyme abnormalities in senile dementia. Choline acetyltransferase and glutamic acid decarboxylase activities in necropsy brain tissue. J Neurol Sci 1977; 34: 247-65.
  • 5 Bartus RT. et al. The cholinergic hypothesis of geriatric memory dysfunction. Science 1982; 217: 408-14.
  • 6 Pirttila T. et al. Long-term efficacy and safety of galantamine in patients with mild-to-moderate Alzheimer’s disease: multicenter trial. Europ J Neurology 2004; 11: 734-41.
  • 7 Whiteheat A. et al. Donepezil for the symptomatic treatment of patients with mild to moderate Alzheimer’s disease: a meta-analysis of individual patient data from randomised controlled trials. International J Geriatric Psychiatry 2004; 19: 624-33.
  • 8 Bowen DM. et al. Choline acetyltransferase activity and histopathology of frontal neocortex from biopsies of demented patients. J Neurological Sciences 1982; 57: 191-202.
  • 9 Gilmor ML. et al. Preservation of nucleus basalis neurons containing choline acetyltransferase and the vesicular acetylcholine transporter in the elderly with mild cognitive impairment and early Alzheimer’s disease. J Comp Neurol 1999; 411: 693-704.
  • 10 Phillips HS. et al. BDNF mRNA is decreased in the hippocampus of individuals with Alzheimer’s disease. Neuron 1991; 7: 695-702.
  • 11 Whitehouse PJ. et al. Nicotinic acetylcholine binding sites in Alzheimer’s disease. Brain Research 1986; 371: 146-51.
  • 12 Dai J. et al. Impaired axonal transport of cortical neurons in Alzheimer’s disease is associated with neuropathological changes. Brain Research 2002; 948: 138-44.
  • 13 Perry E. et al. Nicotinic receptor subtypes in human brain ageing, Alzheimer and Lewy body diseases. Europ J Pharmacol 2000; 393: 215-22.
  • 14 Nordberg A. et al. Change in nicotinic receptor subtypes in temporal cortex of Alzheimer brains. Neurosci Lett 1988; 86: 317-21.
  • 15 Gilmor ML. et al. Preservation of nucleus basalis neurons containing choline acetyltransferase and the vesicular acetylcholine transporter in the elderly with mild cognitive impairment and early Alzheimer’s disease. J Comp Neurol 1999; 411: 693-704.
  • 16 Davis KL. et al. Cholinergic markers in elderly patients with early signs of Alzheimer disease. JAMA 1999; 281: 1401-6.
  • 17 Rinne JO. et al. Brain acetylcholinesterase activity in mild cognitive impairment and early Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2003; 74: 113-5.
  • 18 Hogg RC, Raggenbass M, Bertrand D. Nicotinic acetylcholine receptors: from structure to brain function. Reviews of Physiology, Biochemistry and Pharmacology 2003; 147: 1-46.
  • 19 Lukas RJ, Bencherif M. Heterogeneity and regulation of nicotinic acetylcholine receptors. Int Rev Neurobiol 1992; 34: 25-131.
  • 20 Court JA. et al. Nicotinic receptors in human brain: topography and pathology. J Chem Neuroanat 2000; 20: 281-98.
  • 21 Summers KL, Giacobini E. Effects of local and repeated systemic administration of (-)nicotine on extracellular levels of acetylcholine, norepinephrine, dopamine, and serotonin in rat cortex. Neurochem Res 1995; 20: 753-9.
  • 22 Nordberg A, Winblad B. Reduced number of [3H]nicotine and [3H]acetylcholine binding sites in the frontal cortex of Alzheimer brains. Neurosci Lett 1986; 72: 115-9.
  • 23 Perry EK. et al. Alteration in nicotine binding sites in Parkinson’s disease, Lewy body dementia and Alzheimer’s disease: Possible index of early neuropathology. Neuroscience 1995; 64: 385-95.
  • 24 Martin-Ruiz CM. et al. Alpha4 but not alpha3 and alpha7 nicotinic acetylcholine receptor subunits are lost from the temporal cortex in Alzheimer’s disease. J Neurochem 1999; 73: 1635-40.
  • 25 Burghaus L. et al. Quantitative assessment of nicotinic acetylcholine receptor proteins in the cerebral cortex of Alzheimer patients. Brain Res Mol Brain Res 2000; 76: 385-8.
  • 26 Wevers A. et al. Expression of nicotinic acetylcholine receptors in Alzheimer’s disease: postmortem investigations and experimental approaches. Behavioural Brain Research 2000; 113: 207-15.
  • 27 Perry E. et al. Nicotinic receptor subtypes in human brain ageing, Alzheimer and Lewy body diseases. Eur J Pharmacol 2000; 393: 215-22.
  • 28 Maelicke A. et al. Allosterically potentiating ligands of nicotinic receptors as a treatment strategy for Alzheimer’s disease. Behav Brain Res 2000; 113: 199-206.
  • 29 Maelicke A. Allosteric modulation of nicotinic receptors as a treatment strategy for Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders 2000; 11: 11-8.
  • 30 Erkinjuntti T, Roman G, Gauthier S. Treatment of vascular dementia--evidence from clinical trials with cholinesterase inhibitors. J Neurological Sciences 2004; 226: 63-6.
  • 31 Nordberg A. PET studies and cholinergic therapy in Alzheimer’s disease. Rev Neurol (Paris) 1999; 155: S53-S63.
  • 32 Nordberg A. Nicotinic receptor abnormalities of Alzheimer’s disease: Therapeutic implications. Biological Psychiatry 2001; 49: 200-10.
  • 33 Schliebs R. Basal forebrain cholinergic dysfunction in Alzheimer’s disease — Interrelationship with beta-amyloid, inflammation and neurotrophin signaling. Neurochemical Research 2005; 30: 895-908.
  • 34 Mufson EJ. et al. Entorhinal cortex beta-amyloid load in individuals with mild cognitive impairment. Experimental Neurology 1999; 158: 469-70.
  • 35 Harkany T. et al. beta-Amyloid(Phe(SO3H)(24)) 25–35 in rat nucleus basalis induces behavioral dysfunctions, impairs learning and memory and disrupts cortical cholinergic innervation. Behavioural Brain Research 1998; 90: 133-45.
  • 36 Klingner M. et al. Alterations in cholinergic and non-cholinergic neurotransmitter receptor densities in transgenic Tg2576 mouse brain with [beta]-amyloid plaque pathology. International J Developmental Neuroscience 2003; 21: 357-69.
  • 37 Lahiri DK. et al. Nicotine reduces the secretion of Alzheimer’s beta-amyloid precursor protein containing beta-amyloid peptide in the rat without altering synaptic proteins. Ann NY Acad Sci 2002; 965: 364-72.
  • 38 Seo JH. et al. Effects of nicotine on APP secretion and A[beta]- or CT105-induced toxicity. Biological Psychiatry 2001; 49: 240-7.
  • 39 Efthimiopoulos S. et al. Cholinergic agonists stimulate secretion of soluble full-length amyloid precursor protein in neuroendocrine cells. PNAS 1996; 93: 8046-50.
  • 40 Zamani MR. et al. Nicotine modulates the neurotoxic effect of beta-amyloid protein(25–35) in hippocampal cultures. Neuroreport 1997; 8: 513-7.
  • 41 Kihara T. et al. Nicotinic receptor stimulation protects neurons against beta-amyloid toxicity. Ann Neurol 1997; 42: 159-63.
  • 42 Zamani MR. al. Nicotine modulates the neurotoxic effect of beta-amyloid protein(25–35) in hippocampal cultures. Neuroreport 1997; 8: 513-7.
  • 43 Kihara T. et al. Nicotinic receptor stimulation protects neurons against beta-amyloid toxicity. Ann Neurol 1997; 42: 159-63.
  • 44 Nordberg A. et al. Decreased uptake and binding of 11C-nicotine in brain of Alzheimer patients as visualized by positron emission tomography. J Neural Transm Park Dis Dement Sect 1990; 2: 215-24.
  • 45 Nordberg A. et al. Kinetic analysis of regional (S)(-)11C-nicotine binding in normal and Alzheimer brains – in vivo assessment using positron emission tomography. Alzheimer Dis Assoc Disord 1995; 9: 21-7.
  • 46 Kadir A. et al. Changes in brain C-11-nicotine binding sites in patients with mild Alzheimer’s disease following rivastigmine treatment as assessed by PET. Psychopharmacology 2007; 191: 1005-14.
  • 47 Nyback H. et al. Pet studies of the uptake of (S)-[C-11]Nicotine and (R)-[C-11]Nicotine in the human brain – difficulties in visualizing specific receptor- binding in-vivo. Psychopharmacology 1994; 115: 31-6.
  • 48 Bohnen N, Frey K. Imaging of cholinergic and monoaminergic neurochemical changes in neurodegenerative disorders. Molecular Imaging and Biology 2007; 9: 243-57.
  • 49 Gundisch D. Nicotinic acetylcholine receptors and imaging. Current Pharmaceutical Design 2000; 6: 1143-57.
  • 50 Horti AG, Villemagne VL. The quest for Eldorado: Development of radioligands for in vivo imaging of nicotinic acetylcholine receptors in human brain. Current Pharmaceutical Design 2006; 12: 3877-900.
  • 51 Sullivan JP. et al. A-85380 [3-(2(S)-azetidinylmethoxy) pyridine]: In vitro pharmacological properties of a novel, high affinity alpha 4 beta 2 nicotinic acetylcholine receptor ligand. Neuropharmacology 1996; 35: 725-34.
  • 52 Kimes AS. et al. 2-[18F]F-A85380: PET imaging of brain nicotinic acetylcholine receptors and whole body distribution in humans. FASEB J 2003; 17 (Suppl. 10) 1331-3.
  • 53 Brody AL. et al. Cigarette smoking saturates brain alpha(4)beta(2) nicotinic acetylcholine receptors. Arch Gen Psychiatry 2006; 63: 907-15.
  • 54 Wuellner U. et al. Smoking upregulates [alpha]4[beta]2* nicotinic acetylcholine receptors in the human brain. Neuroscience Letters 2008; 430: 34-7.
  • 55 Pimlott SL. et al. Nicotinic acetylcholine receptor distribution in Alzheimer’s disease, dementia with Lewy bodies, Parkinson’s disease, and vascular dementia: in vitro binding study using 5-[(125)i]-a-85380. Neuropsychopharmacology 2004; 29: 108-16.
  • 56 Schmaljohann J. et al. Imaging of central nACh- Receptors with 2-[18F]F-A85380: optimized synthesis and in vitro evaluation in Alzheimer’s disease. Applied Radiation and Isotopes 2004; 61: 1235-40.
  • 57 O’Brien JT. et al. {alpha}4{beta}2 nicotinic receptor status in Alzheimer’s disease using 123I-5IA-85380 SPECT. J Neurol Neurosurg Psychiatry 2007; 78 (Suppl. 04) 356-62.
  • 58 Terrière E. et al. 5–123I-A-85380 binding to the [alpha]4[beta]2-nicotinic receptor in mild cognitive impairment. Neurobiol Aging. 2008 Nov 24. E-pub ahead of print.
  • 59 Sabri O. et al. Acetylcholine receptors in dementia and mild cognitive impairment. Eur J Nucl Med Mol Imaging 2008; 35: S30-S45.
  • 60 Kendziorra K. et al. Cerebral nicotinic acetylcholine receptors in patients with Alzheimer’s disease and amnestic mild cognitive impairment, comparison to glucose metabolism. Brain 07 and BrainPET 07 Congress BO 8–8. 2007. Ref Type: Abstract.
  • 61 Kendziorra K. et al. Cerebral nicotinic acetylcholine receptors in patients with Alzheimer’s disease assessed with 2-[18F]F-A85380 PET-correlations to dementia severity. Neuroimage 2006; 31: T39.
  • 62 Ellis JR. et al. Relationship between nicotinic receptors and cognitive function in early Alzheimer’s disease: A 2-[18F]fluoro-A-85380 PET study. Neurobiology of Learning and Memory 2008; 90: 404-12.
  • 63 Gottfries CG. et al. The Neurochemistry of Vascular Dementia. Dementia 1994; 5: 163-7.
  • 64 Tomimoto H. et al. Loss of cholinergic pathways in vascular dementia of the Binswanger type. Dementia and Geriatric Cognitive Disorders 2005; 19: 282-8.
  • 65 Perry E. et al. Absence of cholinergic deficits in ,,pure“ vascular dementia. Neurology 2005; 64: 132-3.
  • 66 Colloby SJ. et al. Alterations in nicotinic [alpha]4[beta]2 receptor binding in vascular dementia using 123I-5IA-85380 SPECT: Comparison with regional cerebral blood flow. Neurobiology of Aging 2009; doi: 10.10161j.neurobiolaging.2009.02.005.
  • 67 O’Brien JT. et al. Nicotinic alpha 4 beta 2 receptor binding in dementia with Lewy bodies using I-123–5IA-85380 SPECT demonstrates a link between occipital changes and visual hallucinations. Neuroimage 2008; 40: 1056-63.
  • 68 Brust P. et al. In vivo measurement of nicotinic acetylcholine receptors with [18F]norchloro-fluoro- homoepibatidine. Synapse 2008; 62: 205-18.
  • 69 Deuther-Conrad W. et al. Norchloro-fluoro-homoepibatidine (NCFHEB) – A promising radioligand for neuroimaging nicotinic acetylcholine receptors with PET. European Neuropsychopharmacology 2008; 18: 222-9.
  • 70 Drzezga A. Klinischer Nutzen nuklearmedizinischer Verfahren in der Demenzdiagnostik. Nervenheilkunde 2009; 28: 709-18.