Nervenheilkunde 2009; 28(07): 431-437
DOI: 10.1055/s-0038-1628666
Update Neurologie
Schattauer GmbH

Neuroradiologische Diagnostik und interventionelle Therapie zerebrovaskulärer Erkrankungen

Neuroradiologic imaging and interventional therapy in cerebrovascular disease
A. Dörfler
1   Abteilung für Neuroradiologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg
,
S. Kloska
1   Abteilung für Neuroradiologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg
› Author Affiliations
Further Information

Publication History

Eingegangen am: 10 February 2009

angenommen am: 17 February 2009

Publication Date:
24 January 2018 (online)

Zusammenfassung

Die Neuroradiologie hat sich in Diagnostik und interventioneller Therapie zerebrovaskulärer Erkrankungen im letzten Jahrzehnt rasant weiterentwickelt. Durch multimodale Bildgebungsverfahren ist bei akuten zerebralen Ischämien eine Abschätzung des potenziell zu rettenden Hirngewebes in der Akutphase möglich und kann so die Therapieentscheidung leiten. Die neue Flachdetektorgeneration der Angiografiesysteme ermöglicht die schnelle Akquisition von Volumendaten und entsprechende Sekundärrekonstruktionen, wovon insbesondere die neurointerventionellen Verfahren profitieren. In der Behandlung der akuten zerebralen Ischämie kommen bei proximalen Hirnarterienverschlüssen zunehmend mechanische intraarterielle Verfahren zum Einsatz. Die endovaskuläre Behandlung von symptomatischen Stenosen der hirnversorgenden Arterien mithilfe von Stents ist ein etabliertes Verfahren. Für die Behandlung von zerebralen Aneurysmen ist die endovaskuläre Coilembolisation die Methode der ersten Wahl. Durch diese Entwicklung nimmt die Neuroradiologie nicht nur in der Diagnostik, sondern auch in der Therapie von zerebrovaskulären Erkrankungen einen immer wichtigeren Stellenwert ein.

Summary

Diagnostic and interventional neuroradiology became increasingly important in the field of cerebrovascular disease within the last decade. Multimodal imaging can estimate the amount of tissue at risk in the acute stage of ischemia and thus, guide therapeutic decision. The new generation of flat panel angiography systems enables the rapid acquisition of volume data and secondary reconstruction resulting in increased benefit for various neurointerventional procedures. Intraarterial mechanical devices for the treatment of proximal cerebral artery occlusion in acute cerebral ischemia are increasingly used. The endovascular treatment of symptomatic cervical or cerebral artery stenosis with stent is an accepted method. For the treatment of cerebral aneurysms, endovascular coilembolization is today the method of choice. With all of this improvement, neuroradiology emerged as key role in the acute diagnosis and therapy of cerebrovascular disease.

 
  • Literatur

  • 1 Design, progress and challenges of a double-blind trial of warfarin versus aspirin for symptomatic intracranial arterial stenosis. Neuroepidemiology 2003; 22: 106-117.
  • 2 Bose A. et al. A novel, self-expanding, nitinol stent in medically refractory intracranial atherosclerotic stenoses: the Wingspan study. Stroke 2007; 38: 1531-1537.
  • 3 Bose A. et al. The Penumbra System: a mechanical device for the treatment of acute stroke due to thromboembolism. AJNR Am J Neuroradiol 2008; 29: 1409-1413.
  • 4 Brisman JL, Song JK, Newell DW. Cerebral aneurysms. N Engl J Med 2006; 355: 928-939.
  • 5 Camargo EC. et al. Acute brain infarct: detection and delineation with CT angiographic source images versus nonenhanced CT scans. Radiology 2007; 244: 541-548.
  • 6 Chalela JA. et al. Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison. Lancet 2007; 369: 293-298.
  • 7 Chimowitz MI. et al. Comparison of warfarin and aspirin for symptomatic intracranial arterial stenosis. N Engl J Med 2005; 352: 1305-1316.
  • 8 Doelken M. et al. Flat-panel detector volumetric CT for visualization of subarachnoid hemorrhage and ventricles: preliminary results compared to conventional CT. Neuroradiology 2008; 50: 517-523.
  • 9 Engelhorn T. et al. Flat panel detector angiographic CT in the management of aneurysmal rupture during coil embolization. AJNR Am J Neuroradiol 2008; 29: 1581-1584.
  • 10 Goldmakher G. et al. Hyperdense basilar artery sign on unenhanced CT predicts thrombus and outcome in acute posterior circulation stroke. Stroke 2009; 40: 134-139.
  • 11 Kakuda W. et al. Optimal outcome measures for detecting clinical benefits of early reperfusion: insights from the DEFUSE Study. J Stroke Cerebrovasc Dis 2008; 17: 235-240.
  • 12 Kwee TC, Kwee RM. MR angiography in the followup of intracranial aneurysms treated with Guglielmi detachable coils: systematic review and metaanalysis. Neuroradiology 2007; 49: 703-713.
  • 13 Leys D. et al. Prevalence and significance of hyperdense middle cerebral artery in acute stroke. Stroke 1992; 23: 317-324.
  • 14 Molina CA, Saver JL. Extending reperfusion therapy for acute ischemic stroke: emerging pharmacological, mechanical, and imaging strategies. Stroke 2005; 36: 2311-2320.
  • 15 Molyneux A. et al. International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised trial. Lancet Neurol 2002; 360: 1267-1274.
  • 16 Molyneux AJ. et al. nternational subarachnoid aneurysm trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised comparison of effects on survival, dependency, seizures, rebleeding, subgroups, and aneurysm occlusion. Lancet Neurol 2005; 366: 809-817.
  • 17 Mullins ME. et al. CT and conventional and diffusion-weighted MR imaging in acute stroke: study in 691 patients at presentation to the emergency department. Radiology 2002; 224: 353-360.
  • 18 Noguchi K. et al. Acute subarachnoid hemorrhage: MR imaging with fluid-attenuated inversion recovery pulse sequences. Radiology 1995; 196: 773-777.
  • 19 Ostrem JL. et al. Acute basilar artery occlusion: diffusion-perfusion MRI characterization of tissue salvage in patients receiving intra-arterial stroke therapies. Stroke 2004; 35: e30-34.
  • 20 Richter G. et al. Flat panel detector angiographic CT for stent-assisted coil embolization of broad-based cerebral aneurysms. AJNR Am J Neuroradiol 2007; 28: 1902-1908.
  • 21 Ringleb PA. et al. 30 day results from the SPACE trial of stent-protected angioplasty versus carotid endarterectomy in symptomatic patients: a randomised non-inferiority trial. Lancet Neurol 2006; 368: 1239-1247.
  • 22 Schramm P. et al. Comparison of CT and CT angiography source images with diffusion-weighted imaging in patients with acute stroke within 6 hours after onset. Stroke 2002; 33: 2426-2432.
  • 23 Smith WS. Intra-arterial thrombolytic therapy for acute basilar occlusion: pro. Stroke 2007; 38: 701-703.
  • 24 Stingele R. et al. Clinical and angiographic risk factors for stroke and death within 30 days after carotid endarterectomy and stent-protected angioplasty: a subanalysis of the SPACE study. Lancet Neurol 2008; 07: 216-222.
  • 25 Vindlacheruvu RR, Mendelow AD, Mitchell P. Riskbenefit analysis of the treatment of unruptured intracranial aneurysms. J Neurol Neurosurg Psychiatry 2005; 76: 234-239.
  • 26 Wanke I. et al. Treatment of wide-necked intracranial aneurysms with a self-expanding stent: midterm results. Zentralbl Neurochir 2005; 66: 163-169.
  • 27 Wanke et al. Intrakranielle Aneurysmen: Entstehung, Rupturrisiko, Behandlungsoptionen. Röfo 2003; 175: 1064-1070.
  • 28 Wiebers DO. et al. Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet Neurol 2003; 362: 103-110.