Nervenheilkunde 2009; 28(09): 602-609
DOI: 10.1055/s-0038-1628685
Neuropathologie
Schattauer GmbH

Neue Entwicklungen in der neuropathologischen Diagnostik fokaler Epilepsien

Surgical neuropathology in focal epilepsies
I. Blümcke
1   Neuropathologisches Institut, Universitätsklinikum Erlangen
› Author Affiliations
Further Information

Publication History

Eingegangen am: 11 May 2009

angenommen am: 15 May 2009

Publication Date:
24 January 2018 (online)

Zusammenfassung

Mit zunehmender Verfügbarkeit Epilepsie-chirurgischer Therapieverfahren stellen sich besondere Anforderungen an die neuropathologische Diagnostik. Die Durchsicht von 4 840 am Neuropathologischen Referenzzentrum für Epilepsie-Chirurgie gesammelten Fällen ergibt ein ungewöhnlich breites Spektrum histopathologischer Läsionen. Die häufige mesiale Temporallappensklerose ist durch segmentale Nervenzelluntergänge im Hippocampus gekennzeichnet. Eine neue histopathologische Klassifikation ist für die Prädiktion der postoperativen Anfallsfreiheit hilfreich. Bei Epilepsie-assoziierten Tumoren steht die Charakterisierung neuer Varianten und die Einstufung ihrer biologischen Wertigkeit im Mittelpunkt. Fehlbildungen der kortikalen Entwicklung finden sich in 14% der untersuchten Fälle. Bisherige Klassifikationsschemen berücksichtigen nur unzureichend die unterschiedlichen Läsionsmuster, vor allem in der Abgrenzung fokaler kortikalen Dysplasien. Weiterführende interdisziplinäre Studien sollen eine klinisch-genetische und pathologische Klassifikation zum besseren Verständnis der Ätiologie erarbeiten und die zielgerichtete Entwicklung neuer medikamentöser Therapiestrategien fördern.

Summary

The spectrum of brain lesions in patients with focal, therapy-refractory epilepsies is broad. In our experience with 4 840 surgical tissue samples collected at the German Neuropathological Reference Center for Epilepsy Surgery in Erlangen, major clinico-pathological entities comprise mesial temporal sclerosis, long-term epilepsy associated tumors, and malformations of cortical development. A histopathological and molecular-genetical analysis is mandatory to unravel the underlying pathogenic mechanisms of epilepsy-associated lesions and may contribute to our current understanding of pharmacoresistance and epileptogenesis. However, an interdisciplinary approach will be necessary to establish international classification systems for specific lesion entities and to further explore predictive parameters with respect to postsurgical seizure relief and memory impairment.

 
  • Literatur

  • 1 Barkovich AJ. et al. A developmental and genetic classification for malformations of cortical development. Neurology 2005; 65: 1873-1887.
  • 2 Becker AJ. et al. Molecular neuropathology of epilepsy-associated glioneuronal malformations. J Neuropathol Exp Neurol 2006; 65: 99-108.
  • 3 Becker AJ. et al. Focal cortical dysplasia of Taylor’s balloon cell type: Mutational analysis of the TSC1 gene indicates a pathogenic relationship to tuberous sclerosis. Ann Neurol 2002; 52: 29-37.
  • 4 Becker AJ. et al. Ganglioglioma and gangliocytoma. In: Louis DN. et al. WHO Classification of Tumours of the Central Nervous System. IARC Lyon 2007
  • 5 Blümcke I. Neuropathology of focal epilepsies: a critical review. Epilepsy Behav 2009; 15: 34-9.
  • 6 Blümcke I. et al. Towards a clinico-pathological classification of granule cell dispersion in human mesial temporal lobe epilepsies. Acta Neuropathol 2009; 117: 535-544.
  • 7 Blümcke I. et al. An isomorphic subtype of longterm epilepsy-associated astrocytomas associated with benign prognosis. Acta Neuropathol 2004; 107: 381-388.
  • 8 Blümcke I. et al. Microtubule-associated protein-2 immunoreactivity: a useful tool in the differential diagnosis of low-grade neuroepithelial tumors. Acta Neuropathol (Berl) 2004; 108: 89-96.
  • 9 Blümcke I. et al. A new clinico-pathological classification system for mesial temporal sclerosis. Acta Neuropathol 2007; 113: 235-244.
  • 10 Blümcke I. et al. Increase of nestin-immunoreactive neural precursor cells in the dentate gyrus of pediatric patients with early-onset temporal lobe epilepsy. Hippocampus 2001; 11: 311-321.
  • 11 Blümcke I, Thom M, Wiestler OD. Ammon’s horn sclerosis: a maldevelopmental disorder associated with temporal lobe epilepsy. Brain Pathol 2002; 12: 199-211.
  • 12 Blümcke I. Malformations of cortical development and epilepsies: neuropathological findings with emphasis on focal cortical dysplasia. Epileptic Disord. (submitted)
  • 13 Blümcke I, Wiestler OD. Gangliogliomas: an intriguing tumor entity associated with focal epilepsies. J Neuropathol Exp Neurol 2002; 61: 575-584.
  • 14 Blümcke I. et al. Cellular pathology of hilar neurons in Ammon’s horn sclerosis. J Comp Neurol 1999; 414: 437-453.
  • 15 Bouchet, Cazauvielh. De l’épilepsie considérée dans ses rapports avec l’aliénation mentale. Arch Gen med 19825 09: 510-542.
  • 16 Clusmann H. et al. Lesional mesial temporal lobe epilepsy and limited resections: prognostic factors and outcome. J Neurol Neurosurg Psychiatry 2004; 75: 1589-1596.
  • 17 Crino PB. Focal brain malformations: a spectrum of disorders along the mTOR cascade. Novartis Found Symp 2007; 288: 260-272.
  • 18 Eriksson PS. et al. Neurogenesis in the adult human hippocampus. Nat Med 1998; 04: 1313-1317.
  • 19 Fauser S. et al. Focal cortical dysplasias: surgical outcome in 67 patients in relation to histological subtypes and dual pathology. Brain 2004; 127: 2406-2418.
  • 20 Gowers WR. Epilepsy and other chronic convulsive disorders. London: JOCA Churchill; 1881
  • 21 Guerrini R, Dobyns WB, Barkovich AJ. Abnormal development of the human cerebral cortex: genetics, functional consequences and treatment options. Trends Neurosci 2008; 31: 154-162.
  • 22 Hattiangady B, Shetty AK. Decreased neuronal differentiation of newly generated cells underlies reduced hippocampal neurogenesis in chronic temporal lobe epilepsy. Hippocampus. 2009 Epub ahead of print.
  • 23 Hildebrandt M. et al. Neuropathological spectrum of cortical dysplasia in children with severe focal epilepsies. Acta Neuropathol 2005; 110: 1-11.
  • 24 Hoischen A. et al. Comprehensive characterization of genomic aberrations in gangliogliomas by CGH, array-based CGH and interphase FISH. Brain Pathol 2008; 18: 326-337.
  • 25 Houser CR. Granule cell dispersion in the dentate gyrus of humans with temporal lobe epilepsy. Brain Res 1990; 535: 195-204.
  • 26 Krsek P. et al. Different presurgical characteristics and seizure outcomes in children with focal cortical dysplasia type I or II. Epilepsia 2009; 50: 125-137.
  • 27 Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med 2000; 342: 314-319.
  • 28 Lamparello P. et al. Developmental lineage of cell types in cortical dysplasia with balloon cells. Brain 2007; 130: 2267-2276.
  • 29 Luyken C. et al. The spectrum of long-term epilepsy-associated tumors: long-term seizure and tumor outcome and neurosurgical aspects. Epilepsia 2003; 44: 822-830.
  • 30 Luyken C. et al. Supratentorial gangliogliomas: histopathologic grading and tumor recurrence in 184 patients with a median follow-up of 8 years. Cancer 2004; 101: 146-155.
  • 31 Majores M. et al. Tumor recurrence and malignant progression of gangliogliomas. Cancer 2008; 113: 3355-3363.
  • 32 Marusic P. et al. Clinical characteristics in patients with hippocampal sclerosis with or without cortical dysplasia. Epileptic Disord 2007; 09 (Suppl. 01) S75-82.
  • 33 Mathern GW. et al. The clinical-pathogenic mechanisms of hippocampal neuron loss and surgical outcomes in temporal lobe epilepsy. Brain 1995; 118: 105-118.
  • 34 Mody I, Heinemann U. NMDA receptors of dentate gyrus granule cells participate in synaptic transmission following kindling. Nature 1987; 326: 701-704.
  • 35 Palmini A. et al. Terminology and classification of the cortical dysplasias. Neurology 2004; 62: S2-8.
  • 36 Parent JM. et al. Aberrant seizure-induced neurogenesis in experimental temporal lobe epilepsy. Ann Neurol 2006; 59: 81-91.
  • 37 Parent JM. et al. Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci 1997; 17: 3727-3738.
  • 38 Pauli E. et al. Deficient memory acquisition in temporal lobe epilepsy is predicted by hippocampal granule cell loss. Neurology 2006; 67: 1383-1389.
  • 39 Schramm J. et al. Evidence for a clinically distinct new subtype of grade II astrocytomas in patients with long-term epilepsy. Neurosurgery 2004; 55: 340-347.
  • 40 Shors TJ. et al. Neurogenesis in the adult is involved in the formation of trace memories. Nature 2001; 410: 372-376.
  • 41 Siebzehnrubl F, Blümcke I. Neurogenesis in the Human hippocampus and its relevance to temporal lobe epilepsies. Epilepsia 2008; 49: 55-65.
  • 42 Siebzehnrubl FA. et al. Learning is related to the regenerative capacity of the human hippocampus. (submitted)
  • 43 Sisodiya S. Malformations of cortical development: burdens and insights from important causes of human epilepsy. Lancet Neurol 2004; 03: 29-38.
  • 44 Stefan H. et al. Clinical prediction of postoperative seizure control: structural, functional findings and disease histories. J Neurol Neurosurg Psychiatry 2009; 80: 196-200.
  • 45 Tassi L. et al. Focal cortical dysplasia: neuropathological subtypes, EEG, neuroimaging and surgical outcome. Brain 2002; 125: 1719-1732.
  • 46 Wiebe S. et al. A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med 2001; 345: 311-318.
  • 47 Yilmazer-Hanke DM. et al. Subregional pathology of the amygdala complex and entorhinal region in surgical specimens from patients with pharmacoresistant temporal lobe epilepsy. J Neuropathol Exp Neurol 2000; 59: 907-920.