Kinder- und Jugendmedizin 2009; 09(03): 142-146
DOI: 10.1055/s-0038-1629043
Kinderkardiologie
Schattauer GmbH

Neue echokardiografische Techniken

New echocardiographic techniques
V. Rázek
1   Klinik für Kinderkardiologie, Universität Leipzig, Herzzentrum
,
P. Schneider
1   Klinik für Kinderkardiologie, Universität Leipzig, Herzzentrum
,
M. Weidenbach
1   Klinik für Kinderkardiologie, Universität Leipzig, Herzzentrum
› Author Affiliations
Further Information

Publication History

Eingereicht am: 12 November 2008

Eingereicht am: 26 November 2008

Publication Date:
25 January 2018 (online)

Zusammenfassung

Unter den wichtigen technischen Neuerungen der pädiatrischen Echokardiografie in den letzten 5 Jahren drängt sich als Quanten-sprung das Verfahren der dreidimensionalen Echtzeit-Echokardiografie (real-time three-dimensional echocardiography [RT3DE]) in den Vordergrund. Sie ermöglicht eine realitätsnahe Darstellung von Morphologie und Bewegung des Herzens mit nahezu beliebigen Betrachtungsvarianten. Hinzu kommt eine verbesserte Funktionsbeurteilung der Ventrikel, insbesondere des geometrisch schwer fassbaren rechten Ventrikels. Die Optionen für die Nachbearbeitung haben sich erweitert. Nach 2½-jährigen eigenen Erfahrungen mit 450 untersuchten Patienten im klinischen Routinebetrieb zeichnen sich wichtige Vorteile für Operationsplanung und Indikationsstel-lung für Operation oder Katheterintervention ab. Anhand von typischen Einzelfällen bzw. Fallgruppen werden sie erläutert. Die RT3DE hat auch die Entwicklung von Trainingssimulatoren für die Echokardiografie ermöglicht. Eine neue Methode der Funktionsdiagnostik mit erheblichem Entwicklungspotenzial ist das Speckle-Tracking-Verfahren, das die Beurteilung des segmentalen Deformations-ablaufs durch die Berechnung von zweidimensionalem Strain (2DS) ermöglicht und von uns vor allem für die Analyse mechanischer Dyssynchronie im Rahmen der kardialen Resynchronisationstherapie eingesetzt wird.

Summary

Real time three-dimensional echocardiography (RT3DE) ranks first among technical innovations in echocardiography during the past 5 years. It allows realistic imaging of cardiac structure and motion in any projections or views. It has improved the evaluation of the ventricles, in particular that of the right ventricle, which had been a problem due to its irregular geometry. Options for post processing have increased. After 2½ years experience with 450 patients examined we believe that important advantages have been achieved, e. g. improved planning of surgery and better differential indication for surgery versus catheter intervention. The progress is illustrated with typical cases or diagnosis groups such as atrial septal defects. RT3DE has also paved the way for simulator based training in echo -cardiography. Speckle tracking-derived two-dimensional strain (2DS) appears as another new promising method of functional diagnostics. Main application in our institution is analysis of mechanical dyssynchrony for indication and monitoring of cardiac resynchronization therapy.

 
  • Literatur

  • 1 Thomas JD. The DICOM image formatting standard: its role in echocardiography and angiography. Int J Card Imaging 1998; 14 (01) 1-6.
  • 2 Hansen WH, Gilman G, Finnesgard SJ. et al. The transition from an analog to a digital echocardiography laboratory: the Mayo experience. J Am Soc Echocardiogr 2004; 17: 1214-1224.
  • 3 Acar P, Dulac Y, Taktak A, Abadir S. Real-time three-dimensional fetal echocardiography using matrix probe. Prenat Diagn 2005; 5: 370-375.
  • 4 Anwar AM, Soliman O, van den Bosch AE. et al. Assessment of pulmonary valve and right ventricular outflow tract with real-time three-dimensional echocardiography. Int J Cardiovasc Imaging 2007; 2: 167-175.
  • 5 Artis NJ, Oxborough DL, Williams G. et al. Two-dimensional strain imaging: a new echocardiographic advance with research and clinical applications. Int J Cardiol 2008; 3: 240-248.
  • 6 Chan KL, Liu X, Ascah KJ. et al. Comparison of real-time 3 dimensional echocardiography with conventional 2-dimensional echocardiography in the assessment of structural heart disease. J Am Soc Echocardiogr 2004; 9: 976-980.
  • 7 Chen GZ, Huang GY, Liang XC. et al. Methodological study on real-time three-dimensional echo-cardiography and its application in the diagnosis of complex congenital heart disease. Chin Med J (Engl) 2006; 14: 1190-1194.
  • 8 Chen GZ, Huang GY, Tao ZY. et al. Value of Real-time Three-dimensional Echocardiography Sectional Diagnosis in Complex Congenital Heart Disease Evaluated by Receiver Operating Characteristic Analysis. J Am Soc Echocardiogr 2007; 21 (05) 458-463.
  • 9 Cheng TO, Xie MX, Wang XF. et al. Real-time 3-dimensional echocardiography in assessing atrial and ventricular septal defects: an echocardiographic-surgical correlative study. Am Heart J 2004; 6: 1091-1095.
  • 10 Herberg U, Goldberg H, Breuer J. Three- and four-dimensional freehand fetal echocardiography: a feasibility study using a hand-held Doppler probe for cardiac gating. Ultrasound Obstet Gynecol 2005; 4: 362-371.
  • 11 Hlavacek AM, Crawford Jr FA, Chessa KS, Shirali GS. Real-time three-dimensional echocardiography is useful in the evaluation of patients with atrioventricular septal defects. Echocardiography 2006; 3: 225-231.
  • 12 Hung J, Lang R, Flachskampf F. et al. 3D echocardiography: a review of the current status and future directions. J Am Soc Echocardiogr 2007; 3: 213-233.
  • 13 Jan SL, Hwang B, Fu YC, Chi CS. Initial clinical experience of real-time three-dimensional echo -cardiography in neonates with isolated congenital ductus arteriosus aneurysm. Int J Cardiol 2005; 3: 300-305.
  • 14 Janousek J, Gebauer RA. Cardiac resynchronization therapy in pediatric and congenital heart disease. Pacing Clin Electrophysiol 2008; 1: 21-23.
  • 15 Kasliwal RR, Chouhan NS, Sinha A. et al. Real-time three-dimensional transthoracic echocardiography. Indian Heart J 2005; 2: 128-137.
  • 16 Korinek J, Kjaergaard J, Sengupta PP. et al. High spatial resolution speckle tracking improves accuracy of 2-dimensional strain measurements: an update on a new method in functional echocardiography. J Am Soc Echocardiogr 2007; 2: 165-170.
  • 17 Lang R, Sugeng L. A fantastic journey: 3D cardiac ultrasound goes live. Radiol Manage 2002; 6: 18-22.
  • 18 Lang RM, Mor-Avi V, Sugeng L. et al. Three-dimensional echocardiography: the benefits of the additional dimension. J Am Coll Cardiol 2006; 10: 2053-2069.
  • 19 Li X, Mack GK, Rusk RA. et al. Will a handheld ultra-sound scanner be applicable for screening for heart abnormalities in newborns and children?. J Am Soc Echocardiogr 2003; 10: 1007-1014.
  • 20 Niemann PS, Pinho L, Balbach T. et al. Anatomically oriented right ventricular volume measurements with dynamic three-dimensional echocardiography validated by 3-Tesla magnetic resonance imaging. J Am Coll Cardiol 2007; 17: 1668-1676.
  • 21 Perk G, Tunick PA, Kronzon I. Non-Doppler two-dimensional strain imaging by echocardiography – from technical considerations to clinical applications. J Am Soc Echocardiogr 2007; 3: 234-243.
  • 22 Riehle TJ, Mahle WT, Parks WJ. et al. Real-time three-dimensional echocardiographic acquisition and quantification of left ventricular indices in children and young adults with congenital heart disease: comparison with magnetic resonance imaging. J Am Soc Echocardiogr 2008; 1: 78-83.
  • 23 Seliem MA, Fedec A, Cohen MS. et al. Real-time 3-dimensional echocardiographic imaging of congenital heart disease using matrix-array technology: freehand real-time scanning adds instant morphologic details not well delineated by conventional 2-dimensional imaging. J Am Soc Echocardiogr 2006; 2: 121-129.
  • 24 Seliem MA, Fedec A, Szwast A. et al. Atrioventricular valve morphology and dynamics in congenital heart disease as imaged with real-time 3-dimensional matrix-array echocardiography: comparison with 2-dimensional imaging and surgical findings. J Am Soc Echocardiogr 2007; 7: 869-876.
  • 25 Sklansky M, Miller D, Devore G. et al. Prenatal screening for congenital heart disease using real-time three-dimensional echocardiography and a novel ‘sweep volume’ acquisition technique. Ultra-sound Obstet Gynecol 2005; 5: 435-443.
  • 26 van den Bosch AE, Robbers-Visser D, Krenning BJ. et al. Comparison of real-time three-dimensional echocardiography to magnetic resonance imaging for assessment of left ventricular mass. Am J Cardiol 2006; 1: 113-117.
  • 27 van den Bosch AE, Robbers-Visser D, Krenning BJ. et al. Real-time transthoracic three-dimensional echocardiographic assessment of left ventricular volume and ejection fraction in congenital heart disease. J Am Soc Echocardiogr 2006; 1: 1-6.
  • 28 Weidenbach M, Wild F, Scheer K. et al. Computer-based training in two-dimensional echocardiography using an echocardiography simulator. J Am Soc Echocardiogr 2005; 4: 362-366.