Nuklearmedizin 1994; 33(04): 144-149
DOI: 10.1055/s-0038-1629809
Original Article
Schattauer GmbH

18FDG-PET bei intrakraniellen Meningeomen versus Grading, Proliferationsindex, Zelldichte und zytogenetische Analyse[*]

18FDG-PET in Intracranial Meningiomas versus Grading, Proliferation Index, Cellular Density and Cytogenetical Analysis
U. Cremerius
1   Aus den Kliniken für Nuklearmedizin und Homburg/Saar, FRG
,
E. Striepecke
4   Aus den Kliniken für Pathologie und Homburg/Saar, FRG
,
W. Henn
6   Aus den Kliniken für Humangenetik der Universität des Saarlandes, Homburg/Saar, FRG
,
J. Weis
5   Aus den Kliniken für Neuropathologie der RWTH Aachen und dem Institut für Homburg/Saar, FRG
,
M. Mull
3   Aus den Kliniken für Neuro-radiologie, den Instituten für Homburg/Saar, FRG
,
B. Lippitz
2   Aus den Kliniken für Neurochirurgie, der Abteilung für Homburg/Saar, FRG
,
J. Gilsbach
2   Aus den Kliniken für Neurochirurgie, der Abteilung für Homburg/Saar, FRG
,
J. M. Schröder
5   Aus den Kliniken für Neuropathologie der RWTH Aachen und dem Institut für Homburg/Saar, FRG
,
K. D. Zang
6   Aus den Kliniken für Humangenetik der Universität des Saarlandes, Homburg/Saar, FRG
,
A. Böcking
4   Aus den Kliniken für Pathologie und Homburg/Saar, FRG
,
U. Büll
1   Aus den Kliniken für Nuklearmedizin und Homburg/Saar, FRG
› Author Affiliations
Further Information

Publication History

Eingegangen: 20 January 1994

in revidierter Form: 04 March 1994

Publication Date:
05 February 2018 (online)

Zusammenfassung

62 intrakranielle Meningeome von 60 Patienten wurden präoperativ durch 18FDG-PET untersucht, um den Zusammenhang zwischen 18FDG-Aufnahme und biologischem Tumorverhalten zu überprüfen. Als Parameter der Tumoraggressivität dienten histopathologisches Grading, Zelldichte, Ki-67-Proliferationsindex und Nachweis chromosomaler Aberrationen. Wir fanden einen signifikant erhöhten 18FDG-Uptake bei Grad 2- und 3- im Vergleich zu Grad 1-Meningeomen, bei zellreichen gegenüber mäßig zellreichen Meningeomen, und bei Tumoren mit einem erhöhten Ki-67-Proliferationsindex (über 2%). Die beiden Meningeome, bei denen die ausgeprägtesten chromosomalen Aberrationen beobachtet wurden, wiesen den höchsten 18FDG-Uptake unter den zytogenetisch untersuchten Meningeomen auf. Hieraus folgern wir, daß die 18FDG-PET zur Abschätzung der biologischen Aggressivität von intrakraniellen Meningeomen geeignet ist.

Summary

62 intracranial meningiomas in 60 patients were studied with 18FDG-PET prior to neurosurgery in order to evaluate the relationship between 18FDG uptake and biological aggressiveness of the tumors. Histopathological grading, cellular density, Ki-67 proliferation index and evidence of chromosomal aberrations were used to assess tumor aggressiveness. Significantly elevated 18FDG uptake was found in grade 2- and 3- compared to grade 1-meningiomas, in tumors of high cellularity compared with those of low cellularity, and in meningiomas with an elevated Ki-67 proliferation index (above 2%). The two meningiomas with the most pronounced chromosomal aberrations revealed the highest 18FDG uptake of all cytogenetically studied meningiomas. We conclude that 18FDG-PET is useful for estimating the biological aggressiveness of intracranial meningiomas.

* Herrn Prof. Dr. med. D. Emrich zum 65. Geburtstag


 
  • Literatur

  • 1 Birnbaum MJ, Haspel HC, Rosen OM. Transformation of rat fibroblasts by FSV rapidly increases glucose transporter gene transcription. Science 1987; 235: 1495-8.
  • 2 Di Chiro G, De La Paz RL, Brooks RA. et al. Glucose utilization of cerebral gliomas measured by 18-F fluorodeoxyglucose and positron emission tomography. Neurology 1982; 32: 1323-9.
  • 3 Di Chiro G, Hatazawa J, Katz DA, Rizzoli HV, De Michèle DJ. Glucose utilization by intracranial meingiomas as an index of tumor aggressivity and probability of recurrence: a PET study. Radiology 1987; 164: 521-6.
  • 4 Flier JS, Mueckler MM, Usher P, Lodish HF. Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes. Science 1987; 235: 1492-5.
  • 5 Jaaskelainen J. Seemingly complete removal of histologically benign intracranial meningioma: late recurrence rate and facts predicting recurrence in 657 patients. Surg Neurol 1986; 26: 461-9.
  • 6 Kaiser HJ, Wagenknecht G, Sabri O. et al. Exact correlation of cerebral morphology (MRI-T2-weighted) and function (SPECT-Tc-99m-HMPAO, PET-18-FDG) in cerebral microangiopathy by a special designed headholder. Eur J Nucl Med 1993; 20: 890. (A)
  • 7 Kepes JJ. Meningiomas: Biologiy, pathology and differential diagnosis. New York: Masson; 1982
  • 8 Kleihueys P, Burger PC, Scheithauer BW. The new WHO classification of brain tumours. Brain Pathol 1993; 3: 255-68.
  • 9 Linden MD, Torres FX, Kubus J, Zarbo RJ. Clinical application of morphologic and immunocytochemical assessments of cell proliferation. Am J Clin Pathol 1992; 97: S4-S13.
  • 10 Lindholm P, Minn H, Leskinen-Kallio S. et al. Influence of blood glucose concentration on FDG uptake in cancer - a PET study. J Nucl Med 1993; 34: 1-6.
  • 11 Maier H, Öfner D, Hittmair A, Kitz K, Bud-ka H. Classic, atypical, and anaplastic meningioma: three histopathological subtypes of clinical relevance. J Neurosurg 1992; 77: 615-23.
  • 12 Mirimanoff RO, Dosoretz DE, Linggood RM, Ojemann RG, Martuza RL. Meningioma: analysis of recurrence and progression following neurosurgical resection. J Neurosurg 1985; 62: 18-24.
  • 13 Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 1983; 3: 1-7.
  • 14 Patronas MJ, Di Chiro G, Kufta C. Prediction of survival in glioma patients by means of positron emission tomography. J Neurosurg 1985; 62: 816-22.
  • 15 Phelps ME, Huang SC, Hoffman EJ. et al. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18) 2-fluoro-2-deoxyglucose: validation of method. Ann Neurol 179 6: 371-88.
  • 16 Phelps ME, Maziotta JC, Schelbert HR. Positron emission tomography and autoradiography: principles and applications for the brain and heart. New York: Raven Press:; 1986: 251-3.
  • 17 Plate KH, Dauch W, Bel S, Mennel HD. Prognose in Meningeomen: Relevanz morphologischer Untersuchungen und klinischer Risikofaktoren. Zbl Neurochir 1990; 51: 57-68.
  • 18 Reivich M, Alavi A, Wolf AP. et al. Glucose metabolic rate kinetic model parameter determination in man: the lumped constant and rate constants for (18-F) fluorodeoxy-glucose and (11-C) deoxyglucose. J Cereb Blood Flow Metab 1985; 5: 179-92.
  • 19 Sandberg AA. The chromosomes in human cancer and leukemia. New York: Elsevier; 1990: 895-9.
  • 20 Seabright M. A rapid technique for banding human chromosomes. Lancet 1971; ii: 971-2.
  • 21 Shows TB, Eddy RL, Byers MG. et al. Polymorphic human glucose transporter gene (GLUT) is on chromosome lp31.3 - p35. Diabetes 1987; 36: 5469.
  • 22 Simpson D. The recurrence of intracranial meningiomas after surgical treatment. J Neurol Neurosurg Psychiat 1957; 20: 22-39.
  • 23 Sokoloff L, Reivich M, Kennedy C. et al. The (14-C) deoxyglucose method for measurement of local cerebral glucose utilization: the theory, procedure, and normal values in conscious and anesthetized albino rats. J Neuro-chem 1977; 28: 897-916.
  • 24 Striepecke E, Hoch A, Auer H. et al. TV-bildanalytische Quantifizierung des Prolife -rationsmarkers PCNA an Meningeomen. Verh Dtsch Ges Path 1992; 76: 494. (A)
  • 25 Warburg O. Metabolism of tumors. London: Arnold Constable; 1930: 75-327.
  • 26 Yu CCW, Woods AL, Levison DA. The assessment of cellular proliferation by immu-nohistochemistry: a review of currently available methods and their applications. Histochem J 1992; 24: 121-31.
  • 27 Zang KD. Cytological and cytogenetical studies on human meningiomas. Cancer Gen and Cytogen 1982; 6: 249-74.