Osteologie 2013; 22(03): 206-213
DOI: 10.1055/s-0038-1630125
Osteologische Biomaterialien
Schattauer GmbH

Zukünftige Behandlungsoptionen in der Knochenregeneration

Wachstumsfaktoren versus GentransferFuture treatment options in bone regenerationGrowth factors versus gene transfer
A. Kolk
1   Klinik und Poliklinik für Mund-, Kiefer- und Gesichtschirurgie, Technische Universität München – Klinikum rechts der Isar, München
› Author Affiliations
Further Information

Publication History

eingereicht: 14 June 2013

angenommen: 24 June 2013

Publication Date:
30 January 2018 (online)

Zusammenfassung

Behandlungen therapiebedingter Knochendefekte stellen vor dem Hintergrund des demografischen Wandels in den industrialisierten Ländern, d. h. der Überalterung der Bevölkerung, eine zunehmende Herausfor-derung dar. Die Wiederherstellung eines Knochenareals ist elementarer Bestandteil der rekonstruktiven Chirurgie. Die Verwendung körpereigenen Gewebes ist aufwendig und mit Risiken verbunden. Betroffen sind hier vor allem Patienten, bei denen aufgrund von Vorerkrankungen oder Vorbehandlungen schlechte vaskuläre Verhältnisse vorliegen und somit das Einheilen eines Transplantates erheblich gefährdet ist. Knochenersatzmaterialien führen vor allem bei größeren De-fekten häufig zur Bildung eines minderwertigen Knochenlagers. Durch Wachstumsfaktoren kann die körpereigene Knochenheilung sowie die Osseointegration alloplastischer Implantate erheblich verbessert bzw. beschleunigt werden. Aufgrund der hohen Therapiekosten und kurzen Halbwertszeiten gilt das Interesse verstärkt den Alternativen wie verschiedenen Formen des Gentransfers. Entsprechende Freisetzungssysteme haben hierbei aus verschiedenen Gründen eine erhebliche Bedeutung.

Summary

In the context of demographic changes in industrialized countries, especially due to the aging population, treatment of therapyrelated bone defects provides an increasing challenge. The restoration of a bone defect area is an integral part of reconstructive surgery. Using the body's own bony tissue is costly, invasive and therefore associated with risks for the patient. Here mainly patients are problematic presenting with pre-existing medical conditions or poor vascular supply due to pretreatments. So the ingrowth of autologous grafts can significantly be compromised. Especially in cases of larger defects alternative bone replacement materials often lead to the formation of an insufficient bone quality and therefore do not provide a suitable concept. By the application of growth factors like bone morphogenetic proteins (BMPs) the body's own bone healing capacity and also the osseointegration of alloplastic implants can considerably be improved respectively accelerated. In many animal models as well as in clinical applications the subgroup of BMPs has demonstrated their high potential to induce de novo bone formation in various tissues. Even though several materials, mainly demineralised bone matrices, hydroxyapatite, tricalcium phosphate, poly-lactic acid and collagens have been analysed as potential carriers but the delivery still remains problematic. As none of the latter is able to provide a sustained, continuous release of these factors at the region of interest and growth factors themselves have short half-lives caused by diffusion and degradation processes and due to the high costs of every cytokine therapy the interest is amplified in alternatives such as various forms of gene transfer. Genes encoding different growth factor proteins can directly be delivered to the target cells. Transfected cells serve as local “bioreactors”. For various reasons appropriate delivery systems are here of considerable importance. This review refers to current experimental and clinical applications and identifies different in vivo as well as ex vivo approaches for cell transfection and transduction. Explaining the underlying biological basis, the focus is on different innovative methods providing alternatives to the direct application of cytokines.

 
  • Literatur

  • 1 Urist MR. Bone: formation by autoinduction. Science 1965; 150 (698) 893-899.
  • 2 Urist MR, Strates BS. Bone morphogenetic protein. J Dent Res 1971; 50 (6) 1392-1406.
  • 3 Lind M. Growth factor stimulation of bone healing – Effects on osteoblasts, osteomies, and implants fixation – Abstract. Acta Orthopaedica Scandinavica 1998; 69: 2-37.
  • 4 Schliephake H. Bone growth factors in maxillofacial skeletal reconstruction. Int J Oral Maxillofac Surg 2002; 31 (5) 469-484.
  • 5 Schmidmaier G, Wildemann B, Gabelein T. et al. Synergistic effect of IGF-I and TGF-beta1 on fracture healing in rats: single versus combined application of IGF-I and TGF-beta1. Acta Orthop Scand 2003; 74 (5) 604-610.
  • 6 Kempen DH, Creemers LB, Alblas J. et al. Growth factor interactions in bone regeneration. Tissue engineering Part B 2010; 16 (6) 551-566. [Epub 2010, Nov 3].
  • 7 Linkhart TA, Mohan S, Baylink DJ. Growth factors for bone growth and repair: IGF, TGF beta and BMP. Bone 1996; 19 (1 Suppl) 1S-12S.
  • 8 Nicolas V, Prewett A, Bettica P. et al. Age-related decreases in insulin-like growth factor-I and transforming growth factor-beta in femoral cortical bone from both men and women: implications for bone loss with aging. J Clin Endocrinol Metab 1994; 78 (5) 1011-1016.
  • 9 Zapf J, Hauri C, Waldvogel M, Froesch ER. Acute metabolic effects and half-lives of intravenously administered insulinlike growth factors I and II in normal and hypophysectomized rats. The Journal of clinical investigation 1986; 77 (6) 1768-1775. [Epub 1986, Jun 1].
  • 10 Chen D, Ji X, Harris MA. et al. Differential roles for bone morphogenetic protein (BMP) receptor type IB and IA in differentiation and specification of mesenchymal precursor cells to osteoblast and adipocyte lineages. The Journal of cell biology 1998; 142 (1) 295-305. [Epub 1998, Jul 14].
  • 11 Takahashi Y, Yamamoto M, Tabata Y. Enhanced osteoinduction by controlled release of bone morphogenetic protein-2 from biodegradable sponge composed of gelatin and beta-tricalcium phosphate. Biomaterials 2005; 26 (23) 4856-4865. [Epub 2005, Mar 15].
  • 12 Winn SR, Uludag H, Hollinger JO. Carrier systems for bone morphogenetic proteins. Clinical orthopaedics and related research 1999; 367 (Suppl) S95-S106.
  • 13 Christiansen JH, Coles EG, Wilkinson DG. Molecular control of neural crest formation, migration and differentiation. Current opinion in cell biology 2000; 12 (6) 719-724. [Epub 2000, Nov 7].
  • 14 Kandziora F, Pflugmacher R, Scholz M. et al. Comparison of BMP-2 and combined IGF-I/TGF-ss1 application in a sheep cervical spine fusion model. European Spine Journal 2002; 11 (5) 482-493.
  • 15 Garrison KR, Shemilt I, Donell S. et al. Bone morphogenetic protein (BMP) for fracture healing in adults. Cochrane Database Syst Rev. 2010 (6) CD006950. [Epub 2010, Jun 18].
  • 16 Schmidmaier G, Wildemann B, Heeger J. et al. Improvement of fracture healing by systemic administration of growth hormone and local application of insulin-like growth factor-1 and transforming growth factor-beta1. Bone 2002; 31 (1) 165-172.
  • 17 Kubler NR. [Osteoinduction and -reparation]. Osteoinduktion und -reparation. Mund-, Kiefer- und Gesichtschirurgie: MKG 1997; 1 (1) 2-25. [Epub 1997, Feb 1].
  • 18 Deppe H, Stemberger A. Effects of laser-modified versus osteopromotively coated titanium membranes on bone healing: a pilot study in rat mandibular defects. Lasers Med Sci 2004; 18 (4) 190-195. [Epub 2004, Mar 26].
  • 19 Schmidmaier G, Schwabe P, Strobel C, Wildemann B. Carrier systems and application of growth factors in orthopaedics. Injury 2008; 39 (Suppl 2) S37-S43. [Epub 2008, Sep 23].
  • 20 Barr T, McNamara AJ, Sandor GK. et al. Comparison of the osteoinductivity of bioimplants containing recombinant human bone morphogenetic proteins 2 (Infuse) and 7 (OP-1). Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics 2010; 109 (4) 531-540. [Epub 2010, Mar 2].
  • 21 Lopes NM, Vajgel A, de Oliveira DM. et al. Use of rhBMP-2 to reconstruct a severely atrophic mandible: a modified approach. International journal of oral and maxillofacial surgery 2012; 41 (12) 1566-1570. [Epub 2012, June 26].
  • 22 Evans C. Gene therapy for the regeneration of bone. Injury 2011; 42 (6) 599-604. [Epub 2011, Apr 15].
  • 23 Kolk A, Handschel J, Drescher W. et al. Current trends and future perspectives of bone substitute materials – from space holders to innovative biomaterials. J Craniomaxillofac Surg 2012; 40 (8) 706-718. [Epub 2012, Feb 3].
  • 24 Hannallah D, Peterson B, Lieberman JR, Fu FH, Huard J. Gene therapy in orthopaedic surgery. Instr Course Lect 2003; 52: 753-768.
  • 25 Dillon N. Regulating Gene-Expression in Gene-Therapy. Trends in Biotechnology 1993; 11 (5) 167-173.
  • 26 Carofino BC, Lieberman JR. Gene therapy applications for fracture-healing. The Journal of bone and joint surgery American volume 2008; 90 (Suppl 1) 99-110. [Epub 2008; Mar 20].
  • 27 Kay MA, Glorioso JC, Naldini L. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nature medicine 2001; 7 (1) 33-40.
  • 28 Abiraman S, Varma HK, Umashankar PR, John A. Fibrin glue as an osteoinductive protein in a mouse model. Biomaterials 2002; 23 (14) 3023-3031.
  • 29 Brisson M, Huang L. Liposomes: conquering the nuclear barrier. Curr Opin Mol Ther 1999; 1 (2) 140-146.
  • 30 Seeherman H, Wozney J, Li R. Bone morphogenetic protein delivery systems. Spine 2002; 27 (16 Suppl 1) S16-S23.
  • 31 Rathe F, Junker R, Chesnutt BM, Jansen JA. The effect of enamel matrix derivative (Emdogain) on bone formation: a systematic review. Tissue engineering Part B 2009; 15 (3) 215-224. [Epub 2008, Aug 20].
  • 32 Fischer J, Kolk A, Wolfart S. et al. Future of local bone regeneration – Protein versus gene therapy. J Craniomaxillofac Surg 2011; 39 (1) 54-64.
  • 33 Chen CY, Wu HH, Chen CP. et al. Biosafety assessment of human mesenchymal stem cells engineered by hybrid baculovirus vectors. Molecular pharmaceutics 2011; 8 (5) 1505-1514. [Epub 2011, Jan 5].
  • 34 Kolk A, Haczek C, Koch C. et al. A strategy to establish a gene-activated matrix on titanium using gene vectors protected in a polylactide coating. Biomaterials 2011; 32 (28) 6850-6859. [Epub 2011, Jul 12].
  • 35 Knoell DL, Yiu IM. Human gene therapy for hereditary diseases: a review of trials. Am J Health Syst Pharm 1998; 55 (9) 899-904.
  • 36 Luo T, Zhang W, Shi B. et al. Enhanced bone regeneration around dental implant with bone morphogenetic protein 2 gene and vascular endothelial growth factor protein delivery. Clinical oral implants research 2012; 23 (4) 467-473. [Epub 2011, Mar 30].
  • 37 Tabin CJ, Hoffmann JW, Goff SP, Weinberg RA. Adaptation of a retrovirus as a eucaryotic vector transmitting the herpes simplex virus thymidine kinase gene. Mol Cell Biol 1982; 2 (4) 426-436.
  • 38 Kimmelman J. Medical research, risk, and bystanders. IRB 2005; 27 (4) 1-6. [Epub 2005, Oct 14].
  • 39 Rosenberg SA, Aebersold P, Cornetta K. et al. Gene transfer into humans – immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. The New England journal of medicine 1990; 323 (9) 570-578. [Epub 1990, Aug 30].
  • 40 Evans CH, Ghivizzani SC, Robbins PD. Arthritis gene therapy's first death. Arthritis research & therapy 2008; 10 (3) 110. [Epub 2008, May 31].
  • 41 Raper SE, Chirmule N, Lee FS. et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Molecular genetics and metabolism 2003; 80 (1-2) 148-158. [Epub 2003, Oct 22].
  • 42 Liu Y, Chen C, He H. et al. Lentiviral-mediated gene transfer into human adipose-derived stem cells: role of NELL1 versus BMP2 in osteogenesis and adipogenesis in vitro. Acta biochimica et biophysica Sinica 2012; 44 (10) 856-865. [Epub 2012, Sep 29].
  • 43 Ramasubramanian A, Shiigi S, Lee GK, Yang F. Non-viral delivery of inductive and suppressive genes to adipose-derived stem cells for osteogenic differentiation. Pharmaceutical research 2011; 28 (6) 1328-1337. [Epub 2011, Mar 23].
  • 44 Dragoo JL, Choi JY, Lieberman JR. et al. Bone induction by BMP-2 transduced stem cells derived from human fat. Journal of orthopaedic research: official publication of the Orthopaedic Research Society 2003; 21 (4) 622-629. [Epub 2003, Jun 12].
  • 45 Kawai M, Bessho K, Kaihara S. et al. Ectopic bone formation by human bone morphogenetic protein-2 gene transfer to skeletal muscle using transcutaneous electroporation. Hum Gene Ther 2003; 14 (16) 1547-1556.
  • 46 Gao X, Kim KS, Liu D. Nonviral gene delivery: what we know and what is next. The AAPS journal. 2007; 9 (1) E92-E104. [Epub 2007, Apr 6].
  • 47 Stiehler M, Duch M, Mygind T. et al. Optimizing viral and non-viral gene transfer methods for genetic modification of porcine mesenchymal stem cells. Advances in experimental medicine and biology 2006; 585: 31-48. [Epub 2006, Nov 24].
  • 48 Co DO, Borowski AH, Leung JD. et al. Generation of transgenic mice and germline transmission of a mammalian artificial chromosome introduced into embryos by pronuclear microinjection. Chromosome research 2000; 8 (3) 183-191. [Epub 2000, Jun 7].
  • 49 Eliyahu H, Barenholz Y, Domb AJ. Polymers for DNA delivery. Molecules 2005; 10 (1) 34-64. [Epub 2007, Nov 17].
  • 50 Luo D, Saltzman WM. Synthetic DNA delivery systems. Nat Biotechnol 2000; 18 (1) 33-37.
  • 51 Boussif O, Lezoualc'h F, Zanta MA. et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proceedings of the National Academy of Sciences of the United States of America 1995; 92 (16) 7297-7301. [Epub 1995, Aug 1].
  • 52 Kopatz I, Remy JS, Behr JP. A model for non-viral gene delivery: through syndecan adhesion molecules and powered by actin. The journal of gene medicine 2004; 6 (7) 769-776. [Epub 2004, Jul 9].
  • 53 Mislick KA, Baldeschwieler JD. Evidence for the role of proteoglycans in cation-mediated gene transfer. Proceedings of the National Academy of Sciences of the United States of America 1996; 93 (22) 12349-12354. [Epub 1996, Oct 29].
  • 54 Tang MX, Szoka FC. The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes. Gene therapy 1997; 4 (8) 823-832.
  • 55 Akinc A, Thomas M, Klibanov AM, Langer R. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. The journal of gene medicine 2005; 7 (5) 657-663.
  • 56 Brunner S, Sauer T, Carotta S. et al. Cell cycle dependence of gene transfer by lipoplex, polyplex and recombinant adenovirus. Gene therapy 2000; 7 (5) 401-407. [Epub 2000, Mar 1].
  • 57 Lam AP, Dean DA. Progress and prospects: nuclear import of nonviral vectors. Gene therapy 2010; 17 (4) 439-447. [Epub 2010, Mar 05].
  • 58 Kikuchi M, Koyama Y, Yamada T. et al. Development of guided bone regeneration membrane composed of beta-tricalcium phosphate and poly (L-lactide-co-glycolide-co-epsilon-caprolactone) composites. Biomaterials 2004; 25 (28) 5979-5986. [Epub 2004, Jun 9].
  • 59 Morsczeck C, Gosau M. Stammzellen in der oralen Regeneration. Deutsche Zahnärztliche Zeitschrift 2013; 68 (6) 348.
  • 60 Ibarretxe G, Crende O, Aurrekoetxea M. et al. Neural crest stem cells from dental tissues: a new hope for dental and neural regeneration. Stem cells international. 2012 Article ID 103503. [Epub 2012, Oct 25].
  • 61 Fang J, Zhu YY, Smiley E. et al. Stimulation of new bone formation by direct transfer of osteogenic plasmid genes. Proceedings of the National Academy of Sciences of the United States of America 1996; 93 (12) 5753-5758. [Epub 1996, Jun 11].