Kinder- und Jugendmedizin 2008; 08(06): 335-342
DOI: 10.1055/s-0038-1630870
Knochenerkrankungen
Schattauer GmbH

Die Entwicklung des Skelettsystems im Kindes- und Jugendalter

Skeletal development in childhood and adolescence
Frank Rauch
1   Genetics Unit, Shriners Hospital for Children, Montreal, Canada (Direktor: Dr. Francois Fassier)
› Author Affiliations
Further Information

Publication History

Eingegangen: 26 March 2008

angenommen: 10 April 2008

Publication Date:
27 January 2018 (online)

Zusammenfassung

DasLängenwachstum des Knochens wird hauptsächlich durch die Chondrozyten in der proliferativen und der hypertrophen Zone der Wachstumsfuge bewerkstelligt. Dies wird durch systemische, lokale und mechanische Faktoren kon-trolliert. Es muss ein Rückkopplungsmechanismus bestehen, der sicherstellt, dass das Knochenwachstum in Rich-tungder vorherrschenden Kräfte verläuft. Wie dies funktioniert, ist derzeit aber noch unklar. Längenwachstum verringert die Knochenstabilität,doch wird dies durch das gleichzeitige Knochenwachstum in die Breite ausgeglichen. Breitenwachstum erfolgt durchperiostale Apposition, was die Aufgabe der periostalen Osteoblastenist. Diese Zellen werden vor allem von lokalen Faktoren kontrolliert, die allerdings durch systemisch wirkende Signale moduliert werden. Künftige Forschung muss sich der Frage annehmen, wie periostale Knochenzellen mechanische, hormonelle und andere Einflüsse integrieren und damit eine ausreichende Knochenfestigkeit sicherstellen.

Summary

Bone growth in length is primarily achieved through the action of chondrocytes in the proliferative and hypertrophic zones of the growth plate.Longitudinal growth is controlled by systemic, local paracrine and local mechanical factors. A feedback mechanism must exist which ensures that bone growth proceeds in the direction of the predominant mechanical forces. How this works is unknown at present. Bone growth in length is detrimental to bone stability, but this effect is counteracted by concomitant bone growth in width. This occurs through periosteal apposition, which is the responsibility of periosteal osteoblasts. The action of these cells is mainly controlled by local factors, with modulation by systemic agents.Future research will have to address the question how periosteal bone cells manage to integrate mechanical, hormonal and other input to shape bones that are as strong as they need to be.

 
  • Literatur

  • 1 Allen DM, Mao JJ. Heterogeneous nanostructural and nanoelastic properties of pericellular and interterritorial matrices of chondrocytes by atomic force microscopy. J Struct Biol 2004; 145: 196-204.
  • 2 Abad V, Meyers JL, Weise M. et al. The role of the resting zone in growth plate chondrogenesis. Endocrinology 2002; 143: 1851-1857.
  • 3 Sawae Y, Sahara T, Sasaki T. Osteoclast differentiation at growth plate cartilage-trabecular bone junction in newborn rat femur. J Electron Microsc (Tokyo) 2003; 52: 493-502.
  • 4 Lee ER, Lamplugh L, Shepard NL, Mort JS. The septoclast, a cathepsin B-rich cell involved in the resorption of growth plate cartilage. J Histochem Cytochem 1995; 43: 525-536.
  • 5 Gerber HP, Vu TH, Ryan AM. et al. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 1999; 5: 623-628.
  • 6 Fazzalari NL, Moore AJ, Byers S, Byard RW. Quantitative analysis of trabecular morphogenesis in the human costochondral junction during the postnatal period in normal subjects. Anat Rec 1997; 248: 1-12.
  • 7 Cadet ER, Gafni RI, McCarthy EF. et al. Mechanisms responsible for longitudinal growth of the cortex: coalescence of trabecular bone into cortical bone. J Bone Joint Surg Am 2003; 85-A: 1739-1748.
  • 8 van der Eerden BC, Karperien M, Wit JM. Systemic and local regulation of the growth plate. Endocr Rev 2003; 24: 782-801.
  • 9 Kronenberg HM. Developmental regulation of the growth plate. Nature 2003; 423: 332-336.
  • 10 Mehlman CT, Araghi A, Roy DR. Hyphenated history: the Hueter-Volkmann law. Am J Orthop 1997; 26: 798-800.
  • 11 De Bastiani G, Aldegheri R, Renzi Brivio L, Trivella G. Chondrodiatasis-controlled symmetrical distraction of the epiphyseal plate. Limb lengthening in children. J Bone Joint Surg Br 1986; 68: 550-556.
  • 12 Canadell J, de Pablos J. Correction of angular deformities by physeal distraction. Clin Orthop 1992; 98-105.
  • 13 Frost HM. Biomechanical control of knee alignment: some insights from a new paradigm. Clin Orthop 1997; 335-342.
  • 14 Elder SH, Goldstein SA, Kimura JH. et al. Chondrocyte differentiation is modulated by frequency and duration of cyclic compressive loading. Ann Biomed Eng 2001; 29: 476-482.
  • 15 Wang X, Mao JJ. Accelerated chondrogenesis of the rabbit cranial base growth plate by oscillatory mechanical stimuli. J Bone Miner Res 2002; 17: 1843-1850.
  • 16 Ohashi N, Robling AG, Burr DB, Turner CH. The effects of dynamic axial loading on the rat growth plate. J Bone Miner Res 2002; 17: 284-292.
  • 17 Seeman E. Periosteal bone formation – a neglected determinant of bone strength. N Engl J Med 2003; 349: 320-323.
  • 18 Baron R. General principles of bone biology. In: Favus MJ. (ed). Primer on the metabolic bone diseases and disorders of mineral metabolism. 5th ed Washington, DC: American Society for Bone and Mineral Research; 2003: 1-8.
  • 19 Shapiro F, Holtrop ME, Glimcher MJ. Organization and cellular biology of the perichondrial ossification groove of ranvier: a morphological study in rabbits. J Bone Joint Surg [Am] 1977; 59: 703-723.
  • 20 Allen MR, Hock JM, Burr DB. Periosteum: biology, regulation, and response to osteoporosis therapies. Bone 2004; 35: 1003-1012.
  • 21 Owen M. Cell Population Kinetics of an Osteogenic Tissue. I. J Cell Biol 1963; 19: 19-32.
  • 22 Epker BN, Frost HM. A histological study of remodeling at the periosteal, haversian canal, cortical endosteal, and trabecular endosteal surfaces in human rib. Anat Rec 1965; 152: 129-135.
  • 23 Epker BN, Frost HM. Periosteal appositional bone growth from age two to age seventy in man. A tetracycline evaluation. Anat Rec 1966; 154: 573-577.
  • 24 Parfitt AM, Travers R, Rauch F, Glorieux FH. Structural and cellular changes during bone growth in healthy children. Bone 2000; 27: 487-494.
  • 25 Frost HM. Skeletal structural adaptations to mechanical usage (SATMU): 2. Redefining Wolff’s law: the remodeling problem. Anat Rec 1990; 226: 414-422.
  • 26 Frost HM. Skeletal structural adaptations to mechanical usage (SATMU): 1. Redefining Wolff’s law: the bone modeling problem. Anat Rec 1990; 226: 403-413.
  • 27 Balena R, Shih MS, Parfitt AM. Bone resorption and formation on the periosteal envelope of the ilium: a histomorphometric study in healthy women. J Bone Miner Res 1992; 7: 1475-1482.
  • 28 Garn SM. The course of bone gain and the phases of bone loss. Orthop Clin North Am 1972; 3: 503-520.
  • 29 Garn SM, Poznanski AK, Larson K. Metacarpal lengths, cortical diameters and areas from the 10-state nutrition survey. In: Jaworski ZFG. (ed). Proceedings of the first workshop on bone morphometry. Ottawa, Canada: University of Ottawa Press; 1976: 367-391.
  • 30 Tanner JM, Hughes PC, Whitehouse RH. Radiographically determined widths of bone muscle and fat in the upper arm and calf from age 3–18 years. Ann Hum Biol 1981; 8: 495-517.
  • 31 Ruff C. Growth in bone strength, body size, and muscle size in a juvenile longitudinal sample. Bone 2003; 33: 317-329.
  • 32 Whyte MP. Sclerosing bone disorders. In: Favus MJ. (ed). Primer on the metabolic bone diseases and disorders of mineral metabolism, 5th ed. Washington, DC: American Society for Bone and Mineral Research; 2003: 449-466.
  • 33 Whyte MP, Wenkert D, Clements KL. et al. Bisphosphonate-induced osteopetrosis. N Engl J Med 2003; 349: 457-463.
  • 34 Turner RT, Wakley GK, Hannon KS. Differential effects of androgens on cortical bone histomorphometry in gonadectomized male and female rats. J Orthop Res 1990; 8: 612-617.
  • 35 Yeh JK, Chen MM, Aloia JF. Ovariectomy-induced high turnover in cortical bone is dependent on pituitary hormone in rats. Bone 1996; 18: 443-450.
  • 36 Kim BT, Mosekilde L, Duan Y. et al. The structural and hormonal basis of sex differences in peak appendicular bone strength in rats. J Bone Miner Res 2003; 18: 150-155.
  • 37 Parfitt AM. Parathyroid hormone and periosteal bone expansion. J Bone Miner Res 2002; 17: 1741-1743.
  • 38 Specker B, Binkley T. Randomized trial of physical activity and calcium supplementation on bone mineral content in 3– to 5-year-old children. J Bone Miner Res 2003; 18: 885-892.
  • 39 Zhu K, Greenfield H, Du X. et al. Effects of milk supplementation on cortical bone gain in Chinese girls aged 10–12 years. Asia Pac J Clin Nutr 2003; 12 Suppl: S47.
  • 40 Frost HM. Bone’s mechanostat: a 2003 update. Anat Rec 2003; 275A: 1081-1101.
  • 41 Warden SJ, Fuchs RK, Castillo AB. et al. Exercise when young provides lifelong benefits to bone structure and strength. J Bone Miner Res 2007; 22: 251-259.
  • 42 Falder S, Sinclair JS, Rogers CA, Townsend PL. Long-term behaviour of the free vascularised fibula following reconstruction of large bony defects. Br J Plast Surg 2003; 56: 571-584.
  • 43 Gooding CA, Neuhauser EB. Growth and development of the vertebral body in the presence and absence of normal stress. Am J Roentgenol Radium Ther Nucl Med 1965; 93: 388-394.
  • 44 Roh YS, Dequeker J, Mulier JC. Cortical bone remodeling and bone mass in poliomyelitis. Acta Orthop Belg 1973; 39: 758-771.
  • 45 Ralis ZA, Ralis HM, Randall M. et al. Changes in shape, ossification and quality of bones in children with spina bifida. Dev Med Child Neurol 1976; Suppl 37: 29-41.
  • 46 Maresh MM. Bone, muscle and fat measurements. Longitudinal measurements of the bone, muscle and fat widths from roentgenograms of the extremities during the first six years of life. Pediatrics 1961; 28: 971-984.