Vet Comp Orthop Traumatol 2001; 14(04): 169-178
DOI: 10.1055/s-0038-1632694
Review Article
Schattauer GmbH

Biological fracture fixation: a perspective

J. R. Field
1   Orthopaedic Unit, Flinders University of South Australia, South Australia, Australia
2   College of Veterinary Medicine, Swedish University of Agricultural Sciences, Uppsala, Sweden
,
H. Törnkvist
3   Department of Orthopaedics, Stockholm Söder Hospital, Stockholm, Sweden
› Author Affiliations
This work was supported by grants from the EP Taylor Equine Research Fund, Ontario, Canada, AO Vet, Davos, Switzerland, the Mohill Orthopaedic Research Initiative, Ontario, Canada and the Adelaide Bone and Joint Research Foundation, South Australia, Australia.
Further Information

Publication History

Received 05 March 2001

Accepted 17 April 2001

Publication Date:
09 February 2018 (online)

The concept of biological fracture fixation encompasses a reduction in soft-tissue trauma at the time of surgery, usually involving percutaneous application of plates. This is combined with the implantation of reduced amounts of hardware; the desired result is a fracture that repairs through indirect bone union with the formation of callus. The end result is a fracture that heals faster and is stronger, at least in the healing phase.

Biological fixation is not uncommonly utilized in human orthopaedics, particularly for diaphyseal fractures which involve a number (>2) of fragments with articular disruption. This methodology may also have application in veterinary orthopaedics, particularly small animals or the juvenile equid.

 
  • REFERENCES

  • 1 Matter P, Brennwald J, Perren SM. The effect of static compression and tension on internal remodelling of cortical bone. Helvetica Chirurgica Acta. 1975 Suppl 12.
  • 2 Perren SM, Boitzy A. Cellular differentiation and bone biomechanics during the consolidation of a fracture. Anat Clin 1978; 01: 13.
  • 3 Field JR. Bone plate fixation: Its relationship with implant induced osteoporosis. Vet Comp Orthop Traumatol 1997; 10 (02) 88-94.
  • 4 Rahn BA, Gallinaro P, Baltensperger A. et al. Primary bone healing. An experimental study in rabbits. J Bone Joint Surg 1971; 53-A: 783-6.
  • 5 Ganz R, Mast J, Weber BG. et al. Clinical aspects of “bio-logical” plating. Injury 1991; 22: 4-8.
  • 6 Gerber C, Mast JW, Ganz R. Biological internal fixation of fractures. Arch Orthop Traum Surg 1990; 109: 295-303.
  • 7 Ruedi TP, Sommer C, Leutenegger A. New techniques in indirect reduction of long bone fractures. Clin Orthop 1998; 347: 27-34.
  • 8 Baumgaertel F, Perren SM, Rahn B. Animal experimental studies of biological plate osteosynthesis of multi-fragment fractures of the femur. Unfallchirurg 1994; 97 (01) 19-27.
  • 9 Baumgaertel F, Buhl M, Rahn B. Fracture healing in biological plate osteosynthesis. Injury 1998; 29 (Suppl. 03) 3-6.
  • 10 Ostrum RF, Geel C. Indirect reduction and internal fixation of supracondylar femur fractures without bone graft. J Orthop Trauma 1995; 09 (04) 278-84.
  • 11 Leunig M, Hertel R, Slebenrock KA, Ballmer FT. et al. The evolution of indirect reduction techniques for the treatment of fractures. Clin Orthop 2000; 375: 7-14.
  • 12 Rozbruch SR, Muller U, Gautier E, Ganz R. The evolution of femoral shaft plating techniques. Clin Orthop 1998; 354: 195-208.
  • 13 Koval KJ, Sanders R, Borrelli J, Helfet D. et al. Indirect reduction and percutaneous screw fixation of displaced tibial plateau fractures. J Orthop Trauma 1997; 06 (03) 340-6.
  • 14 Smith SR, Bronk JT, Kelly PJ. Effect of fracture fixation on cortical bone blood flow. J Orthop Res 1990; 08 (04) 471-8.
  • 15 Daum WJ, Simmons DJ, Chang SL. et al. Effect of fixation devices and radiostrontium clearance in the intact canine femur. Clin Orthop Rel Res 1985; 194: 306-12.
  • 16 Simmons DJ, Daum WJ, Calhoun JH. Regional alterations in long bone strontium clearance produced by internal fixation devices. Part II: Histomorphometry. J Orthop Res 1988; 02: 245-9.
  • 17 Frost HM. The regional acceleratory phenomenon: a review. Henry Ford Hosp Med J 1983; 31: 3-9.
  • 18 Gautier E, Cordey J, Mathys R. et al. Porosity and remodelling of plated bone after internal fixation: Result of stress shielding or vascular damage?. Proc 4th European Conf Biomat Biomech 1983; 195-200.
  • 19 Gautier E, Rahn BA, Perren SM. Effects of different plates on internal and external remodelling of intact bones. Trans 32nd Orthop Res Soc 1986; 322.
  • 20 Dueland R, Rahn BA, Perren SM. et al. Morphological effect on bone with standard and experimental plate conformations. Trans 32nd Orthop Res Soc 1986; 323.
  • 21 Jacobs RR, Rahn BA, Perren SM. Effects of plates on cortical bone perfusion. J Trauma 1981; 21: 91-5.
  • 22 Field JR, Lord P, Maaripuu E, Sumner-Smith G. Semi-quantitative assessment of tibial flow and distribution in response to surgical intervention using first pass radionuclide angiography and intravascular vital dye. Injury 1999; 30: 681-8.
  • 23 van Riet YEA, van der Werken C, Marti RK. Subfascial plate fixation of comminuted diaphyseal femoral fractures: A report of three cases utilizing biological osteosynthesis. J Orthop Traum 1997; 11 (01) 57-60.
  • 24 Perren SM, Cordey J, Rahn BA. et al. Early temporary porosis of bone induced by internal fixation. A reaction to necrosis, not stress protection?. Clin Orthop Rel Res 1988; 232: 139-51.
  • 25 Dueland R, Varga JS, Rahn BA. et al. Early morphological effect on bone with standard and experimental plates. Trans 32nd Orthop Res Soc 1986; 391-2.
  • 26 Uhthoff HK, Foux A, Yeadon A. et al. Two processes of bone remodelling in plated intact femora: An experimental study in dogs. J Orthop Res 1993; 11 (01) 78-91.
  • 27 Uhthoff HK, Boisvert D, Finnegan M. Cortical porosis under plates. Reaction to unloading or to necrosis?. J Bone Joint Surg 1994; 76-A: 1507-12.
  • 28 Perren SM, Klaue K, Pohlet O. et al. The limited contact dynamic compression plate (LC-DCP). Arch Orthop Traum Surg 1990; 109: 304-10.
  • 29 Miclau T, Remiger A, Tepic S. et al. A mechanical comparison of the dynamic compression plate, limited-contact dynamic compression plate and the point contact fixator. J Orthop Res 1995; 09: 17-21.
  • 30 Swiontkowski MF, Senft D, Taylor S. et al. Plate design has an effect on cortical bone perfusion. Trans 37th Orthop Res Soc 1991; 387.
  • 31 Kowalski M, Schemitsch EH, Senft D. Comparative evaluation of the effect of plate design on fracture healing with special reference to cortical bone blood flow and biomechanical properties. Trans 39th Orthop Res Soc 1993; 569.
  • 32 Field JR, Hearn TC, Caldwell CB. Bone plate fixation: An evaluation of interface contact area and force of the Dynamic Compression Plate (DCP) and the Limited contact-Dynamic Compression Plate (LC- DCP) applied to cadaveric bone. J Orthop Trauma 1997; 11 (05) 368-73.
  • 33 Field JR, Hearn TC, Caldwell CB. The influence of screw torque, object radius of curvature, mode of bone plate application and bone plate design on bone-plate interface mechanics. Injury 1998; 29 (03) 233-41.
  • 34 Field JR. Elements of bone plate fixation. Doctoral dissertation, Swedish University of Agricultural Sciences, Uppsala, Sweden 1998
  • 35 Beaupre GS, Carter DR, Orr TE. et al. Stresses in plated long bones: The role of screw tightness and interface slipping. J Orthop Res 1988; 06 (01) 39-50.
  • 36 Cheal EJ, Mansmann KA, Di Gioia AM. et al. Role of interfragmentary strain in fracture healing: An ovine model of a healing osteotomy. J Orthop Res 1991; 09 (01) 131-42.
  • 37 von Arx C. Force transmission through friction in plate osteosynthesis. AO-Bulletin, 1975
  • 38 Fransden PA, Christoffersen H, Madsen T. Holding power of different screws in the femoral head: A study in human cadaver hips. Acta Orthop Scand 1983; 55: 349-51.
  • 39 Cordey J, Rahn BA, Perren SM. Human torque control in the use of bone screws. In: Current concepts of internal fixation of fractures. Uhthoff HK. ed. Berlin: Springer; 1980: 235-43.
  • 40 Cordey J, Florin P, Veihelmann D. et al. The control of torque applied to screws and the compression achieved in self-compression plates. In: Biomechanics V, Asmussen P, Joergensen L. eds. Baltimore: University Park Press; 1978: 281-93.
  • 41 Carter DR, Shimaoka EE, Harris WH. et al. Changes in long bone structural properties during the first eight weeks of implantation. J Orthop Res 1984; 02: 80-9.
  • 42 Cordey J, Martin D, Schlaepfer F. et al. Interaction between screw and plate in internal fixation: Torque components in cortical bone screws. In: Current concepts of internal fixation of fractures. Uhthoff HK. ed. Berlin: Springer-Verlag; 1980: 235-43.
  • 43 Gotzen L, Haas N, Hutter J. Biomechanical studies of torque and force of the 4.5 mm AO cortex screw as a lag screw. In: Current concepts of internal fixation of fractures. Uhthoff HK. ed. Berlin: Springer-Verlag; 1980: 259-67.
  • 44 Field JR. Screw torque and interfragmentary compression in equine cadaver longbone fractures. Vet Comp Orthop Traumatol 1993; 06: 163-5.
  • 45 Field JR, McKee S. Screw torque and bone plate fixation to equine cadaver longbones. Vet Comp Orthop Traumatol 1996; 09: 1-3.
  • 46 Field JR, Hearn TC, Woodside T. Bone strain distribution and construction stiffness following bone plate application at different levels of screw torque in cadaver bone. Vet Comp Orthop Traumatol 2001; 14: 78-83.
  • 47 Korvick DL, Monville JD, Pijanowski GJ. et al. The effects of screw removal on bone strain in an idealized plated bone model. Vet Surg 1988; 17 (03) 111-6.
  • 48 Tornkvist H, Hearn TC, Schatzker J. The strength of plate fixation in relation to the number and spacing of bone screws. J Orthop Traum 1996; 10 (03) 204-8.
  • 49 Dennis J, Sanders R, Milne T. Minimal vs. maximal compression plating of the ulna: A biomechanical study of indirect reduction technique. J Orthop Traum 1993; 07 (02) 152-3.
  • 50 Field JR, Hearn TC, Caldwell CB, Tornkvist H. A pressure sensitive film study on the effect of screw omission on bone plate interface mechanics in cadaveric bone. Vet Comp Orthop Traumatol 1997; 10: 205-9.
  • 51 Field JR, Tornkvist H, Hearn TC, Sumner-Smith G. Bone strain distribution and construction stiffness following bone plate application with symmetrical omission of screws in cadaver bone. Injury 1999; 30: 591-8.
  • 52 Uhthoff HK, Finnegan M. The effects of metal plates on post-traumatic remodelling and bone mass. J Bone Joint Surg 1983; 65-B: 66-71.
  • 53 Woo SYL, Lothringer KS, Akeson WH. et al. Less rigid internal fixation plates: Historical perspectives and new concepts. J Orthop Res 1984; 01: 431-49.