Vet Comp Orthop Traumatol 2003; 16(03): 138-144
DOI: 10.1055/s-0038-1632777
Original Research
Schattauer GmbH

Lumbar intervertebral disc replacement using bioabsorbable self-reinforced poly-L-lactide full-threaded screws, or cylindrical implants of polylactide polymers, bioactive glass and Polyactive™

T. Palmgren
1   Department of Orthopaedics and Traumatology, Helsinki University Central Hospital, Helsinki, Finland
,
P. Ylinen
1   Department of Orthopaedics and Traumatology, Helsinki University Central Hospital, Helsinki, Finland
2   ORTON Orthopedic Hospital, Invalid Foundation, Helsinki, Finland
,
R.-M. Tulamo
1   Department of Orthopaedics and Traumatology, Helsinki University Central Hospital, Helsinki, Finland
3   Department of Surgery, Faculty of Veterinary Medicine, Helsinki University, Helsinki, Finland
,
M. Kellomäki
1   Department of Orthopaedics and Traumatology, Helsinki University Central Hospital, Helsinki, Finland
4   Institute of Biomaterials, Tampere University of Technology, Tampere, Finland
,
P. Türmälä
1   Department of Orthopaedics and Traumatology, Helsinki University Central Hospital, Helsinki, Finland
4   Institute of Biomaterials, Tampere University of Technology, Tampere, Finland
,
P. Rokkanen
1   Department of Orthopaedics and Traumatology, Helsinki University Central Hospital, Helsinki, Finland
› Author Affiliations
The authors would like to thank the Finska Lâkaresâllskapet, the Academy of Finland, the Foundation for Orthopaedical and Traumatological Research in Finland.
Further Information

Publication History

Received 28 March 2002

Accepted 18 October 2002

Publication Date:
22 February 2018 (online)

Summary

Intervertebral disc surgery leads to changes in the segmental anatomy and mobility, and subsequently to degenerative changes in the lumbar spine. Artificial intervertebral disc implants sufficient to replace the human lumbar intervertebral disc have been developed and the requirements for these defined. This is to our knowledge the first study on bioabsorbable intervertebral disc replacement implants. SR-PLLA screws, previously used in orthopaedic internal fixations, and cylindrical implants, specifially developed for this experimental preliminary study, were used to replace lumbar intervertebral discs of growing pigs. After a 15-week follow-up period, the radiological and histological changes in the intervertebral spaces were analyzed. The cylindrical implants were able to prevent narrowing of discectomied spaces, and tissue regeneration in the intervertebral space was induced and occured simultaneously with degradation of the implant.

 
  • References

  • 1 Bao Q-B, McCullen GM, Higham PA, Dumbleton JH, Yuan HA. The artificial disc: theory, design and materials. Biomaterials. 1996; 17: 1157-67.
  • 2 van Blitterswijk CA, Bakker D, Leenders H, v.d. Brink J, Hesseling SC, Bovell YP, Radder AM, Sakkers RJ, Gaillard ML, Heinze PH, Beumer GJ. Interfacial reactions leading to bone-bonding with PEO/PBT copolymers (Polyactive™). In: Ducheyne P, Kokubo T, Blitterswijk van CA. (eds). Bone-bonding biomaterials. Leidertorp (The Netherlands): Reed Healthcare Communications; 1993: 13-30.
  • 3 Carlisle EM. Biochemical and morphological changes associated with long bone abnormalities in silicon deficiency. J Nutr 1980; 110: 1046-56.
  • 4 Carlisle EM. Silicone as an essential trace element in animal nutrition. In: Silicon biochemistry. Ciba Foundation Symposium 121. Chichester (UK): Wiley; 1986: 123-39.
  • 5 Dooris AP, Goel VK, Grosland NM, Gilbertson LG, Wilder DG. Load-sharing between anterior and posterior elements in a lumbar motion segment implanted with an artificial disc. Spine 2001; 26: E122-9.
  • 6 Eijkelkamp MF, van Donkelaar CC, Veldhuizen AG, van Horn JR, Huyghe JM, Verkerke GJ. Requirements for an artifical intervertebral disc. Int J Artif Organs 2001; 24: 311-21.
  • 7 Ellä V, Türmälä P, Kellomâki M. In vitro properties of PLLA screws and novel bioabsorbable implant with elastic nucleus to replace intervertebral disc. Journal of Materials Science. Materials in medicine. (submitted).
  • 8 Enker P, Steffee A, Mcmillin C, Keppler L, Biscup R, Miller S. Artificial disc replacement. Preliminary report with a 3-year minimum follow-up. Spine 1993; 18: 1061-70.
  • 9 Eysel P, Rompe J, Schoenmayr R, Zoellner J. Biomechanical behaviour of a prosthetic lumbar nucleus. Acta Neurochir (Wien) 1999; 141: 1083-7.
  • 10 Goel VK, Goyal S, Clark C, Nishiyama K, Nye T. Kinematics of the whole lumbar spine, effect of discectomy. Spine 1985; 10: 543-53.
  • 11 Goldner J. A modification of the masson trichrome technique for routine laboratory purposes. Am J Pathol 1938; 14: 237-43.
  • 12 Hedman TP, Kostuik JP, Fernie GR, Hellier WG. Design of an intervertebral disc prosthesis. Spine 1991; 16: 256-60.
  • 13 Hench LL. Glass and Genes: A forecast for the future. In:W Holand, V Rheinberger 1997; 70: 439-52.
  • 14 Hench LL, West JK. Biological Applications of bioactive glasses. In: Life chemistry reports. Amsterdam: Harwood Academic Publishers GmbH; 1996: 187-241.
  • 15 Hou TS, Tu KY, Xu UK, Li ZB, Cai AH, Wang HC. Lumbar intervertebral disc prosthesis. An experimental study. Chin Med J 1991; 104: 381-6.
  • 16 Kadoya K, Kotani Y, Abumi K, Takada T, Shimamoto N, Shikinami Y, Kadosawa T, Kaneda K. Biomechanical and morhpologic evaluation of a three-dimensional fabric sheep artificial intervertebral disc: in vitro and in vivo analysis. Spine 2001; 26: 1562-9.
  • 17 Karlsson KH, Ylanen HO, Aro HT. Porous bone implants. In: Vincenzini P. (ed). Materials in clinical application. Faenza, Italy: Techna; 1999: 33-40.
  • 18 Kirkaldy-Willis WH, Burton CV. Managing low back pain. Third edition.. New York: Churchill Livingstone; 1992: 105-19.
  • 19 Kostuik JP. Intervertebral disc replacement. Experimental study. Clin Orthop 1997; 337: 2741.
  • 20 Meakin JR, Reid JE, Hukins DW. Replacing the nucleus pulposus of the intervertebral disc. Clin Biomech 2001; 16: 560-5.
  • 21 Mochida J, Nishimura K, Nomura T, Toh E, Chiba M. The importance of preserving disc structure in surgical approches to lumbar disc herniation. Spine 1996; 21: 1556-63.
  • 22 Rokkanen P, Bostman O, Vainionpaa S, Makela EA, Hirvensalo E, Partio EK, Vihtonen K, Patiala H, Tormala P. Absorbable devices in the fixation of fractures. J Trauma 1996; 40: 123-7.
  • 23 Rokkanen P, Bostman O, Hirvensalo E, Makela EA, Partio EK, Patiala H, Vainionpaa S, Vihtonen K, Tormala P. Bioabsorbable fixation in ortopaedic surgery and traumatology. Biomaterials 2000; 21: 2607-13.
  • 24 Tibrewal SB, Pearcy MJ, Portec I, Spivey MB, Chir B. A prospective study of lumbar spinal movements before and after discectomy using biplanar radiography, correlation of clinical and radiograpic findings. Spine 1985; 10: 455-9.
  • 25 Türmälä P. Biodegradable self-reinforced composite materials; manufacturing structure and mechanical properties. Clin Mater 1992; 10: 29-34.
  • 26 Türmälä P, Vainionpää S, Kilpikari j, Rokkanen P. The effects of fibre reinforcement and gold plating on the flexural and tensile strength of PGA/PLA copolymer materials in vitro. Biomaterials 1987; 08: 42-5.
  • 27 Vuono-Hawkins M, Langrana NA, Parsons JR, Lee CK, Zimmerman MC. Materials and designs concepts for an intervertebral disc spacer. II. Multidurometer composite design. J Applied Biomat 1995; 06: 117-23.
  • 28 Vert M, Chabot F, Leray J, Christel P. Stereoregular bioresorbable polyesters for orthopedic surgery. Macromol Chem Suppl 1981; 05: 30-41.
  • 29 Zeegers WS, Bohnen LM, Laaper M, Verhaegen MJ. Artificial disc replacement with the modular type SB Charite III: 2 year results in 50 prospectively studied patients. Eur Spine J 1999; 03: 210-7.
  • 30 Zollner J, Heine J, Eysel P. 3-dimensional biomechanical study of a new flexible lumbar intervertebral disc implant. Ortopade 2001; 30: 323-7.