Thromb Haemost 2018; 118(06): 979-989
DOI: 10.1055/s-0038-1641715
Coagulation and Fibrinolysis
Schattauer GmbH Stuttgart

The Essential Ectoenzyme SmNPP5 from the Human Intravascular Parasite Schistosoma mansoni is an ADPase and a Potent Inhibitor of Platelet Aggregation

Manal Elzoheiry
1   Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States
2   Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
,
Akram A. Da'dara
1   Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States
,
Armelle M. deLaforcade
3   Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States
,
Samar N. El-Beshbishi
2   Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
,
Patrick J. Skelly
1   Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States
› Author Affiliations
Funding This work was supported by grant AI-056273 from the NIH-NIAID and by a scholarship from the United States Agency for International Development/Egyptian Ministry of Higher Education (Mission Department).
Further Information

Publication History

15 December 2017

04 March 2018

Publication Date:
18 April 2018 (online)

Abstract

Schistosomes are intravascular parasitic platyhelminthes infecting > 200 million people globally and causing a debilitating disease, schistosomiasis. Despite the relatively large size of the adult worms and their disruption of blood flow, surprisingly, they do not appear to provoke thrombus formation around them in vivo. We hypothesize that proteins expressed at the host–parasite interface are key to this ability. Here, we functionally express an ectonucleotide pyrophosphatase/phosphodiesterase homologue, SmNPP5, that is expressed at the tegumental surface of intravascular Schistosoma mansoni. We report that SmNPP5, a known virulence factor for the worms, is a type one glycoprotein that cleaves the artificial substrate p-Nph-5′-TMP in a reaction that requires cations and at an optimal pH of 9. Using immunolocalization and enzyme activity measurements, we confirm that SmNPP5 is exclusively expressed at the host interactive surface of all intravascular life stages. SmNPP5 inhibits platelet aggregation in a dose-dependent manner, as measured by multiple electrode aggregometry (MEA) using whole blood. Inhibition is apparent when either collagen or adenosine diphosphate (ADP) is used as agonist but is lost following heat treatment of SmNPP5. Unlike its mammalian homologue, NPP5, the schistosome protein cleaves ADP and with a Km of 246 ± 34 µM. In sum, SmNPP5 is expressed in the intravascular environment where it can degrade ADP and act as an anticoagulant. In this manner, the protein likely helps limit blood clot formation around the worms in vivo to permit the parasites free movement within the vasculature.

 
  • References

  • 1 King CH, Dangerfield-Cha M. The unacknowledged impact of chronic schistosomiasis. Chronic Illn 2008; 4 (01) 65-79
  • 2 Colley DG, Bustinduy AL, Secor WE, King CH. Human schistosomiasis. Lancet 2014; 383 (9936): 2253-2264
  • 3 Martins AV. Non-human vertebrate hosts of Schistosoma haematobium and Schistosoma mansoni. Bull World Health Organ 1958; 18 (5-6): 931-944
  • 4 Karoum KO, Amin MA. Domestic and wild animals naturally infected with Schistosoma mansoni in the Gezira Irrigated Scheme, Sudan. J Trop Med Hyg 1985; 88 (02) 83-89
  • 5 Fulford AJ, Butterworth AE, Ouma JH, Sturrock RF. A statistical approach to schistosome population dynamics and estimation of the life-span of Schistosoma mansoni in man. Parasitology 1995; 110 (Pt 3): 307-316
  • 6 Harris AR, Russell RJ, Charters AD. A review of schistosomiasis in immigrants in Western Australia, demonstrating the unusual longevity of Schistosoma mansoni. Trans R Soc Trop Med Hyg 1984; 78 (03) 385-388
  • 7 Bloch EH. In vivo microscopy of schistosomiasis. II. Migration of Schistosoma mansoni in the lungs, liver, and intestine. Am J Trop Med Hyg 1980; 29 (01) 62-70
  • 8 Keating JH, Wilson RA, Skelly PJ. No overt cellular inflammation around intravascular schistosomes in vivo. J Parasitol 2006; 92 (06) 1365-1369
  • 9 Wu YP, Lenting PJ, Tielens AG, de Groot PG, van Hellemond JJ. Differential platelet adhesion to distinct life-cycle stages of the parasitic helminth Schistosoma mansoni. J Thromb Haemost 2007; 5 (10) 2146-2148
  • 10 Bhardwaj R, Skelly PJ. Purinergic signaling and immune modulation at the schistosome surface?. Trends Parasitol 2009; 25 (06) 256-260
  • 11 Vasconcelos EG, Ferreira ST, Carvalho TM. , et al. Partial purification and immunohistochemical localization of ATP diphosphohydrolase from Schistosoma mansoni. Immunological cross-reactivities with potato apyrase and Toxoplasma gondii nucleoside triphosphate hydrolase. J Biol Chem 1996; 271 (36) 22139-22145
  • 12 Vasconcelos EG, Nascimento PS, Meirelles MN, Verjovski-Almeida S, Ferreira ST. Characterization and localization of an ATP-diphosphohydrolase on the external surface of the tegument of Schistosoma mansoni. Mol Biochem Parasitol 1993; 58 (02) 205-214
  • 13 DeMarco R, Kowaltowski AT, Mortara RA, Verjovski-Almeida S. Molecular characterization and immunolocalization of Schistosoma mansoni ATP-diphosphohydrolase. Biochem Biophys Res Commun 2003; 307 (04) 831-838
  • 14 Levano-Garcia J, Mortara RA, Verjovski-Almeida S, DeMarco R. Characterization of Schistosoma mansoni ATPDase2 gene, a novel apyrase family member. Biochem Biophys Res Commun 2007; 352 (02) 384-389
  • 15 van Balkom BW, van Gestel RA, Brouwers JF. , et al. Mass spectrometric analysis of the Schistosoma mansoni tegumental sub-proteome. J Proteome Res 2005; 4 (03) 958-966
  • 16 Braschi S, Curwen RS, Ashton PD, Verjovski-Almeida S, Wilson A. The tegument surface membranes of the human blood parasite Schistosoma mansoni: a proteomic analysis after differential extraction. Proteomics 2006; 6 (05) 1471-1482
  • 17 Braschi S, Wilson RA. Proteins exposed at the adult schistosome surface revealed by biotinylation. Mol Cell Proteomics 2006; 5 (02) 347-356
  • 18 Da'dara AA, Bhardwaj R, Ali YB, Skelly PJ. Schistosome tegumental ecto-apyrase (SmATPDase1) degrades exogenous pro-inflammatory and pro-thrombotic nucleotides. PeerJ 2014; 2: e316
  • 19 Braschi S, Borges WC, Wilson RA. Proteomic analysis of the schistosome tegument and its surface membranes. Mem Inst Oswaldo Cruz 2006; 101 (Suppl. 01) 205-212
  • 20 Bhardwaj R, Krautz-Peterson G, Da'dara A, Tzipori S, Skelly PJ. Tegumental phosphodiesterase SmNPP-5 is a virulence factor for schistosomes. Infect Immun 2011; 79 (10) 4276-4284
  • 21 Rofatto HK, Tararam CA, Borges WC, Wilson RA, Leite LC, Farias LP. Characterization of phosphodiesterase-5 as a surface protein in the tegument of Schistosoma mansoni. Mol Biochem Parasitol 2009; 166 (01) 32-41
  • 22 Castro-Borges W, Simpson DM, Dowle A. , et al. Abundance of tegument surface proteins in the human blood fluke Schistosoma mansoni determined by QconCAT proteomics. J Proteomics 2011; 74 (09) 1519-1533
  • 23 Ohe Y, Ohnishi H, Okazawa H. , et al. Characterization of nucleotide pyrophosphatase-5 as an oligomannosidic glycoprotein in rat brain. Biochem Biophys Res Commun 2003; 308 (04) 719-725
  • 24 Gorelik A, Randriamihaja A, Illes K, Nagar B. A key tyrosine substitution restricts nucleotide hydrolysis by the ectoenzyme NPP5. FEBS J 2017; 284 (21) 3718-3726
  • 25 Albright RA, Chang WC, Robert D. , et al. NPP4 is a procoagulant enzyme on the surface of vascular endothelium. Blood 2012; 120 (22) 4432-4440
  • 26 Ramalho-Pinto FJ, Gazzinelli G, Howells RE, Mota-Santos TA, Figueiredo EA, Pellegrino J. Schistosoma mansoni: defined system for stepwise transformation of cercaria to schistosomule in vitro. Exp Parasitol 1974; 36 (03) 360-372
  • 27 Basch PF. Cultivation of Schistosoma mansoni in vitro. I. Establishment of cultures from cercariae and development until pairing. J Parasitol 1981; 67 (02) 179-185
  • 28 Bobyr E, Lassila JK, Wiersma-Koch HI. , et al. High-resolution analysis of Zn(2+) coordination in the alkaline phosphatase superfamily by EXAFS and x-ray crystallography. J Mol Biol 2012; 415 (01) 102-117
  • 29 Cesari IM, Simpson AJ, Evans WH. Properties of a series of tegumental membrane-bound phosphohydrolase activities of Schistosoma mansoni. Biochem J 1981; 198 (03) 467-473
  • 30 Bhardwaj R, Skelly PJ. Characterization of schistosome tegumental alkaline phosphatase (SmAP). PLoS Negl Trop Dis 2011; 5 (04) e1011
  • 31 Faghiri Z, Camargo SM, Huggel K. , et al. The tegument of the human parasitic worm Schistosoma mansoni as an excretory organ: the surface aquaporin SmAQP is a lactate transporter. PLoS One 2010; 5 (05) e10451
  • 32 Da'dara AA, de Laforcade AM, Skelly PJ. The impact of schistosomes and schistosomiasis on murine blood coagulation and fibrinolysis as determined by thromboelastography (TEG). J Thromb Thrombolysis 2016; 41 (04) 671-677
  • 33 Da'dara AA, Bhardwaj R, Skelly PJ. Schistosome apyrase SmATPDase1, but not SmATPDase2, hydrolyses exogenous ATP and ADP. Purinergic Signal 2014; 10 (04) 573-580
  • 34 Da'dara AA, Skelly PJ. Schistosomes versus platelets. Thromb Res 2014; 134 (06) 1176-1181
  • 35 File S. Interaction of schistosome eggs with vascular endothelium. J Parasitol 1995; 81 (02) 234-238