Thromb Haemost 1994; 71(05): 533-543
DOI: 10.1055/s-0038-1642478
Review Article
Schattauer GmbH Stuttgart

Structure and Function of rap Proteins in Human Platelets

Mauro Torti
The Department of Biochemistry, University of Pavia Pavia, Italy
,
Eduardo G Lapetina
1   The Cell Biology Division, Burroughs Wellcome Co., Research Triangle Park, NC, USA
› Author Affiliations
Further Information

Publication History

Received 07 December 1992

Accepted after revision 31 January 1994

Publication Date:
26 July 2018 (online)

 
  • References

  • 1 Bourne HR, Sanders DA, McCormick F. The GTPase superfamily: a conserved switch for diverse cell functions. Nature 1990; 348: 125-132
  • 2 Downward J. The ras superfamily of small GTP-binding proteins. Trends Biochem Sci 1990; 15: 469-472
  • 3 Kahn RA, Der CJ, Bokoch GM. The ras superfamily of GTP-binding proteins: guidelines on nomenclature. FASEB J 1992; 6: 2512-2513
  • 4 Lapetina EG, Reep BR. Specific binding of [α-32P]GTP to cytosolic and membrane-bound proteins of human platelets correlates with the activation of phospholipase C. Proc Natl Acad Sci USA 1987; 84: 2261-2265
  • 5 Bhullar RP, Haslam RJ. Detection of 23–27 kDa GTP-binding proteins in platelets and other cells. Biochem J 1987; 245: 617-620
  • 6 Pizon V, Chardin P, Lerosey I, Olofsson B, Tavitian A. Human cDNAs rapl and rap2 homologous to the Drosophila gene Dras3 encode proteins closely related to ras in the effector region. Oncogene 1988; 3: 201-204
  • 7 Pizon V, Lerosey I, Chardin P, Tavitian A. Nucleotide sequence of a human cDNA encoding a ras-related protein (rapIB). Nucleic Acids Res 1988; 16: 7719
  • 8 Kitayama H, Sugimoto Y, Matsuzaki T, Ikawa Y, Noda M. A ras related gene with transformation suppressor activity. Cell 1989; 56: 77-84
  • 9 Kawata M, Matsui Y, Kondo l, Hishirda T, Teranishi Y, Takai Y. A novel small molecular weight GTP-binding protein with the same putative effector domain as the ras proteins in bovine brain membranes. Purification determination of primarystructure and characterization. J Biol Chem 1988; 268: 18965-18971
  • 10 Ohmori T, Kikuchi Y, Yamamoto K, Kim S, Takai Y. Small molecular weight GTP-binding proteins in human platelet membranes Purification and characterization of a novel GTP-binding protein with a molecular weight of 22,000. J Biol Chem 1989; 264: 1877-1881
  • 11 Nagata K, itoh H, Takenaka K, Ui M, Kaziro Y, Nozawa Y. Purification, identification and characterization of two GTP-binding proteins with molecular weights of 25,000 and 21,000 in human platelet cytosol. J Biol Chem 1989; 264: 17000-5
  • 12 Ohmstede CA, Farrell FX, Reep BR, Clemetson KJ, Lapetina EG. Rap2B: a ras-related GTP-binding protein from platelets. Proc Natl Acad Sci USA 1990; 87: 6527-6531
  • 13 Farrell FX, Ohmstede CA, Reep BR, Lapetina EG. cDNA sequence of a new ras-related gene (rap2B) isolated from human platelets with sequence homology to rap2. Nucleic Acids Res 1990; 18: 4281
  • 14 Klinz FJ, Seifert R, Schwaner I, Gaussephol H, Frank R, Schultz G. Generation of specific antibodies against rapl A, rap IB and rap2 small GTP-binding p roteins Analysis of rap and ras proteins in membrane from mammalian cells. Eur J Biochem 1992; 207: 207-213
  • 15 Torti M, Ramaschi G, Sinigaglia F, Lapetina EG, Balduini C. Association of the low molecular weight GTP-binding protein rap2B with the cytoskeleton during platelet aggregation. Proc Natl Acad Sci USA 1993; 90: 7553-7557
  • 16 Bokoch GM, Der CJ. Emerging concepts in the ras superfamily of GTP- binding proteins. FASEB J 1993; 7: 750-759
  • 17 Yamamoto T, Kaibuchi K, Mizuno T, Hiroyoshi M, Shirataki H, Takai Y. Purification and characterization from bovine brain cytosol of proteins that regulate the GDP/GTP exchange reaction of smg p21s, ras p21 -like GTP- binding proteins. J Biol Chem 1990; 265: 16626-16634
  • 18 Kaibuchi K, Mizuno T, Fujioka H, Yamamoto T, Kishi K, Fukumoto Y, Hori Y, Takai Y. Molecular cloning of the cDNA for stimulatory GDP/GTP exchange protein for smg p21s (ras p21 -like small GTP-binding proteins) and characterization of stimulatory GDP/GTP exchange protein. Mol Cell Biol 1991; 11: 2873-2880
  • 19 Hiroyoshi M, Kaibuchi K, Kawamura S, Hata Y, Takai Y. Role of the C-terminal region of smg p21, a ras p21 -like small GTP-binding protein in membrane and smg p21 GDP/GTP exchange protein interactions. J Biol Chem 1991; 266: 2962-2969
  • 20 Shirataki H, Kaibuchi K, Hiroyoshi M, Isomura M, Araki S, Sasaki T, Takai Y. Inhibition of the action of the stimulatory exchange protein for smg p21 by geranylgeranylated synthetic peptides designed from its C-terminal region. J Biol Chem 1991; 266: 20672-20677
  • 21 Mizuno T, Kaibuchi K, Yamamoto T, Kawamura M, Sakoda T, Fujioka H, Matsura Y, Takai Y. A stimulatory GDP/GTP exchange protein for smg p21 is active on the post-translationally processed form of c-Ki-ras p21 and rhoA p21. Proc Natl Acad Sci USA 1991; 88: 6442-6446
  • 22 Hiraoka K, Kaibuchi K, Ando S, Musha T, Takaishi K, Mizuno T, Asada M, Ménard L, Tomhave E, Didsbury J, Snyderman R, Takai Y. Both stimulatory and inhibitory GDP/GTP exchange proteins smg GDS and rho GDI are active on multiple small GTP-binding proteins. Biochem Biophys Res Commun 1992; 182: 921-930
  • 23 Kikuchi A, Sasaki T, Araki S, Hata Y, Takai Y. Purification and characterization from bovine brain cytosol of two GTPase-activating proteins specific for smg p21, a GTP-binding protein having the same effector domain as c-ras p21s. J Biol Chem 1989; 264: 9133-9136
  • 24 Polakis P, Rubinfeld B, Evans T, McCormick F. Purification of a plasma membrane-associated GTPase-activating protein specific for rapl/Krev-1 from HL60 cells. Proc Natl Acad Sci USA 1991; 88: 239-243
  • 25 Rubinfeld B, Munemitsu S, Clark R, Conroy L, Watt K, Crosier WJ, McCormick F, Polakis P. Molecular cloning of a GTPase activating protein specific for the Krev-1 protein p21raP1 . Cell 1991; 65: 1033-1042
  • 26 Polakis P, Rubinfeld B, McCormick F. Phosphorylation of rap 1 GAP in vivo by cAMP-dependent kinase and the cell cycle p34cdc2 kinase in vitro. J Biol Chem 1992; 267: 10780-10785
  • 27 Rubinfeld B, Crosier WJ, Albert I, Conroy L, Clark R, McCormick F, Polakis P. Localization of the rap 1 GAP catalytic domain and sites of phosphorylation by mutational analysis. Mol Cell Biol 1992; 12: 4634-4642
  • 28 Nice EC, Fabri L, Hammacher A, Holden J, Simpson RJ, Burgess AW. The purification of rapl GTPase-activating protein from bovine brain cytosol. J Biol Chem 1992; 267: 1546-1553
  • 29 Bencke Marti K, Lapetina EG. Epinephrine suppresses raplBGAP-ac- tivated GTPase activity in human platelets. Proc Natl Acad Sci USA 1992; 89: 2784-2788
  • 30 Janoueix-Lerosey I, Polakis P, Tavitian A, de Gunzburg J. Regulation of the GTPase activity of the ras-related rap2 protein. Biochem Biophys Res Commun 1992; 189: 455-464
  • 31 Farrell FX, Lapetina EG. Partial purification of a GTPase activating protein for rap2B from bovine brain membrane. Biochem Biophys Res Commun 1992; 189: 717-721
  • 32 Buss JE, Quilliam LA, Kato K, Casey PJ, Solski PA, Wong G, Clark R, McCormick F, Bokoch GM, Der CJ. The COOH-terminal domain of rapl A (Krev-1) protein is isoprenylated and supports transformation by an H-ras: raplA chimeric protein. Mol Cell Biol 1991; 11: 1523-1530
  • 33 Winegar DA, Molina y Vedia L, Lapetina EG. Isoprenylation of rap2 proteins in platelets and human erythroleukemia cells. J Biol Chem 1991; 266: 4381-4386
  • 34 Kawata M, Farnsworth CC, Yoshida Y, Gelb MH, Glomset JA, Takai Y. Posttranslationally processed structure of the human platelet protein smg p21B: evidence for geranylgeranylation and carboxyl methylation of the C-terminal cysteine. Proc Natl Acad Sci USA 1990; 87: 8960-8964
  • 35 Huzoor-Akbar Winegar DA, Lapetina EG. Carboxyl methylation of platelet rapl proteins is stimulated by guanosine 5’-(3-o-thio)triphosphate. J Biol Chem 1991; 266: 4387-4391
  • 36 Lapetina EG, Lacal JC, Reep BR, Molina y, Vedia L. A ras-related protein is phosphorylated and translocated by agonists that increase cAMP levels in human platelets. Proc Natl Acad Sci USA 1989; 86: 3131-3134
  • 37 Winegar DA, Ohmstede CA, Chu L, Reep BR, Lapetina EG. Antisera specific for rapl proteins distinguish between processed and unprocessed rapIB. J Biol Chem 1991; 266: 4375-4380
  • 38 Maltese WA, Sheridan KM. Isoprenoid modification of G25K (Gp), a low molecular mass GTP-binding protein distinct from p21ras . J Biol Chem 1990; 265: 17883-90
  • 39 Backlund PS Jr. GTP-stimulated carboxyl methylation of a soluble form of the GTP-binding protein G25K in brain. J Biol Chem 1992; 267: 18432-18439
  • 40 Huzoor-Akbar Wang WJ, Kornhauser R, Volker C, Stock JB. Protein prenylcysteine analog inhibits agonist-receptor-mediated signal transduction in human platelets. Proc Natl Acad Sci USA 1993; 90: 868-872
  • 41 Farrell FX, Yamamoto K, Lapetina EG. Prenyl group identification of rap2 proteins: a ras superfamily member other than ras that is famesylated. Biochem J 1993; 289: 349-55
  • 42 Farrell FX, Torti M, Lapetina EG. Rap protein: investigating the role in cellular function. J Lab Clin Med 1992; 120: 533-537
  • 43 Kawata M, Kikuchi A, Hoshijima M, Yamamoto K, Hashimoto E, Yamamura H, Takai Y. Phosphorylation of smg p21, a ras p21-like GTP-binding protein by cyclic AMP-dependent protein kinase in a cell-free system and in response to prostaglandin E1 in intact human platelets. J Biol Chem 1989; 264: 15688-15695
  • 44 Lerosey I, Pizon V, Tavitian A, de Gunzburg J. The cAMP-dependent protein kinase phosphorylates the rapl protein in vitro as well as in intact fibroblasts but not the closely related rap2 protein. Biochem Biophys Res Commun 1991; 175: 430-436
  • 45 Torti M, Lapetina EG. Prostacyclin and platelets: a novel signal transduction mechanism. In: Prostacyclin: New Perspectives for Basic Research and Novel Therapeutic Indications. Rubanyi GM, Vane J. (eds) Elsevier Science Publishers: 1992: 25-35
  • 46 Kroll MH, Schafer AI. Biochemical mechanisms of platelet activation. Blood 1989; 74: 1381-1395
  • 47 Cox AC, Carroll RC, White JC, Rao GH. Recycling of platelet phosphorylation and cytoskeleton assembly. J Cell Biol 1984; 98: 8-15
  • 48 Halbrugge M, Walter U. Purification of a vasodilatator-regulated phosphoprotein from human platelets. Eur J Biochem 1989; 185: 41-50
  • 49 Fox JEB, Reynolds CC, Johnson MM. Identification of glycoprotein IbB as one of the major proteins phosphorylated during exposure of intact platelets to agents that activate cyclic AMP-dependent protein kinase. J Biol Chem 1987; 262: 12627-12631
  • 50 Fischer TH, White GC II. Partial purification and characterization of thrombolamban, a 22,000 Dalton cAMP-dependent protein kinase substrate in platelets. Biochem Biophys Res Commun 1987; 149: 700-706
  • 51 White TE, Lacal JC, Reep BR, Fischer TH, Lapetina EG, White GC. II. Thrombolamban the 22-kDa platelet substrate of cyclic AMP-dependent protein kinase is immunologically homologous with the ras family of GTP-binding proteins. Proc Natl Acad Sci USA 1990; 87: 758-762
  • 52 Lazarowski ER, Lacal JC, Lapetina EG. Agonist-induced phosphorylation of an immunologically ras-related protein in human erythroleukemia cells. Biochem Biophys Res Commun 1989; 161: 972-978
  • 53 Lazarowski ER, Winegar DA, Nolan RD, Oberdisse E, Lapetina EG. Effect of protein kinase A on inositide metabolism and rapl G-protein in human erythroleukemia cells. J Biol Chem 1990; 265: 13188-13123
  • 54 Ohmori T, Kikuchi A, Yamamoto K, Kawata M, Kondo J, Takai Y. Identification of a platelet Mr 22,000 GTP-binding protein as the novel smg-21 gene product having the same putative effector domain as the ras gene products. Biochem Biophys Res Commun 1988; 157: 670-676
  • 55 Siess W, Winegar DA, Lapetina EG. Rap IB is phosphorylated by protein kinase A in intact platelets. Biochem Biophys Res Commun 1990; 170: 944-950
  • 56 Altschuler D, Lapetina EG. Mutational analysis of the cAMP-dependent protein kinase-mediated phosphorylation site of rap lB. J Biol Chem 1993; 268: 7527-7531
  • 57 Hoshijima M, Kikuchi A, Kawata M, Ohmori T, Hashimoto E, Yamamura H, Takai Y. Phosphorylation by cAMP-dependent protein kinase of a human platelet Mr 22,000 GTP-binding protein as (smg p21) having the same putative effector domain as the ras gene products. Biochem Biophys Res Commun 1988; 157: 851-860
  • 58 Hata Y, Kaibuchi K, Kawamura S, Hiroyoshi M, Shirataki H, Takai Y. Enhancement of the actions of smg p21 GDP/GTP exchange protein by the protein kinase A-catalyzed phosphorylation of smg p21. J Biol Chem 1991; 266: 6571-6577
  • 59 Sahyoun N, McDonald B, Farrell FX, Lapetina EG. Phosphorylation of a ras-related GTP-binding protein rap IB, by a neuronal Ca++/calmodulin-dependent protein kinase CaM kinase Gr. Proc Natl Acad Sci USA 1991; 88: 2643-2647
  • 60 Imai A, Hattori H, Takahashi M, Nozawa Y. Evidence that cyclic AMP may regulate Ca++ mobilization and phospholipases in thrombin-stimulated human platelets. Biochem Biophys Res Commun 1983; 112: 693-700
  • 61 Lazarowski ER, Lapetina EG. Activation of platelet phospholipase C by fluoride is inhibited by elevation of cyclic AMP. Biochem Biophys Res Commun 1989; 158: 440-444
  • 62 Watson PS, McConnell RT, Lapetina EG. The rapid formation of inositol phosphates in human platelets by thrombin is inhibited by prostacyclin. J Biol Chem 1984; 259: 13199-203
  • 63 Lapetina EG. The signal transduction induced by thrombin in human platelets. FEBS Lett 1990; 268: 400-404
  • 64 Mauco G, Chap H, Douste-Blazy L. Characterization and properties of a phosphatidylinositol phosphodiesterase (phospholipase C) from platelet cytosol. FEBS Lett 1979; 100: 367-370
  • 65 Billali MM, Lupctina EG, Cuatrccasas P. Phospholipase A2 and phubphulipasc C activities of platelets Diffeiential substiute specificity, Ca++ requirement, pH dependence and cellular localization. J Biol Chem 1980; 255: 10227-10231
  • 66 Siess W, Lapetina EG. Properties and distribution of phosphatidylinositol-specific phospholipase C in human and horse platelets. Biochim Biophys Acta 1983; 752: 329-338
  • 67 Baldassare JJ, Fisher GJ. Regulation of membrane-associated and cytosolic phospholipase C activities in human platelets by guanosine triphosphate. J Biol Chem 1986; 261: 11942-11944
  • 68 Culty M, Davidson MML, Haslam RJ. Effects of guanosine 5'-[γ-thio] triphosphate and thrombin on the phosphoinositide metabolism of electro-permeabilized human platelets. Eur J Biochem 1988; 171: 523-533
  • 69 Brass LF, Shaller CC, Belmonte EJ. Inositol 1,4,5-triphosphate-induced granule secretion in platelets. J Clin Invest 1987; 79: 1269-1275
  • 70 Brass LF, Laposata M, Banga HS, Rittenhouse SE. Regulation of the phosphoinositide hydrolysis pathway in thrombin-stimulated platelets by a pertussis toxin-sensitive guanine nucleotide-binding protein. J Biol Chem 1986; 261: 16838-16847
  • 71 Crouch MF, Lapetina EG. A role for G1 in control of thrombin receptor-phospholipase C coupling in human platelets. J Biol Chem 1988; 263: 3363-3371
  • 72 Sicss W, Weber PC, Lapetina EG. Activation of phospholipase C is dissociated from arachidonate metabolism during platelet shape change induced by thrombin or platelet-activating factor. Epinephrine does not induce phospholipase C activation or platelet shape change. J Biol Chem 1984; 259: 8286-8292
  • 73 Rhee SG. Inositol phospholipid-specific phospholipase C: interaction of the γl isoform with tyrosine kinase. Trends Biochem Sci 1991; 16: 297-301
  • 74 Banno Y, Yu A, Nakashima T, Homma Y, Takenawa T, Nozawa Y. Purification and characterization of a cytosolic phosphoinositide-phospholi- pase C (γ2-type) from human platelets. Biochem Biophys Res Commun 1990; 167: 396-401
  • 75 Banno Y, Nakashima T, Kumada T, Ebisawa K, Nonomura Y, Nozawa Y. Effects of gelsolin on human platelet cytosolic phosphoinositide-phos- pholipase C isozymes. J Biol Chem 1992; 267: 6488-6494
  • 76 Torti M, Lapetina EG. Role of rap IB and p21ras GTPase activating protein in the regulation of phospholipase C-γl in human platelets. Proc Natl Acad Sci USA 1992; 89: 7796-800
  • 77 Taylor SJ, Chae HZ, Rhee SG, Exton JH. Activation of the (β1 isoenzyme of phospholipase C by α subunits of the Gq class of G proteins. Nature 1991; 350: 516-8
  • 78 Shenker A, Goldsmith P, Unson CG, Spiegel AM. The G protein coupled to the thromboxane A2 receptor in human platelets is a member of the novel Gq family. J Biofchem 1991; 266: 9309-9313
  • 79 Baldassare JJ, Tarver AP, Henderson PA, Mackin WM, Sahagan B, Fisher GJ. Reconstitution of the thromboxane A2 receptor-stimulated phosphoinositide hydrolysis in isolated platelet membranes: involvement of phosphoinositide-specific phospholipase C-β and GTP-binding protein Gq . Biochem J 1993; 291: 235-240
  • 80 Camps M, Carozzi A, Schnabel P, Scheer A, Parker PJ, Gierschik P. Isozyme-selective stimulation of phospholipase C-β2 by G protein βγ- subunits. Nature 1992; 360: 684-686
  • 81 Katz A, Wu D, Simon MI. Subunits βγ of heterotrimeric G protein activate β2 isoform of phospholipase C. Nature 1992; 360: 686-689
  • 82 Golden A, Brugge JS. Thrombin treatment induces rapid changes in tyrosine phosphorylation in platelets. Proc Natl Acad Sci USA 1989; 86: 901-905
  • 83 Ferrell JE Jr, Martin GS. Platelet tyrosine-specific protein phosphorylation is regulated by thrombin. Mol Cell Biol 1988; 8: 3603-3610
  • 84 Nakamura S, Yamamura H. Thrombin and collagen induce rapid tyrosine phosphorylation of a common set of cellular proteins on tyrosine in human platelets. J Biol Chem 1989; 264: 7089-7091
  • 85 Settleman J, Narasimhan V, Foster LC, Weinberg RA. Molecular cloning of cDNAs encoding the GAP-associatcd protein p190: implications for a signaling pathway from ras to the ucleus. Cell 1992; 69: 539-549
  • 86 Wong G, Muller O, Clark R, Conroy L, Moran MF, Polakis P, McCormick F. Molecular cloning and nucleic acid binding properties of the GAP-associated tyrosine phosphoprotein p62. Cell 1992; 69: 551-558
  • 87 Torti M, Bencke Marti K, Altschuler D, Yamamoto K, Lapetina EG. Erythropoietin induces p21ras activation and pl20GAP tyrosine phosphorylation in human erythroleukemia cells. J Biol Chem 1992; 267: 8293-8298
  • 88 Guinebault C, Payrastre B, Sultan C, Mauco G, Breton M, Levy-Toledano S, Plantavid M, Chap H. Tyrosine kinases and phosphoinositide metabolism in thrombin-stimulated human platelets. Biochem J 1993; 292: 851-856
  • 89 Cichowski K, McCormick F, Brugge JS. p21ras GAP association with Fy, Lyn, and Yes in thrombin-activated platelets. J Biol Chem 1992; 267: 5025-5028
  • 90 Huang M, Bolen JB, Barnwell JW, Shattil SJ, Brugge JS. Membrane glycoprotein IV (CD 36) is physically associated with the Fyn, Lyn, and Yes protein-tyrosine kinases in human platelets. Proc Natl Acad Sci USA 1991; 88: 7844-8
  • 91 McCormick F. ras GTPase activating protein: signal transmitter and signal terminator. Cell 1989; 56: 5-8
  • 92 Freeh M, John J, Pizon V, Chardin P, Tavitian A, Clark R, McCormick F, Wittinghofer A. Inhibition of GTPase activating protein stimulation of ras-p21 GTPase by the Krev-1 gene product. Science 1990; 249: 169-171
  • 93 Hata Y, Kikuchi A, Sasaki T, Schaber MD, Gibbs JB, Takai Y. Inhibition of the ras p21 GTPase-activating protein-stimulated GTPase activity of c-Ha-ras p21 by smg p21 having the same putative effector domain as ras p21s. J Biol Chem 1990; 265: 7104-7107
  • 94 Campa MJ, Chang KJ, Molina y, Vedia L, Reep BR, Lapetina EG. Inhibition of ras-induced germinal vesicle breakdown in Xenopus oocytes by rap IB. Biochem Biophys Res Commun 1991; 174: 1-5
  • 95 Fox JEB. Platelet contractile proteins. In: Platelet Membrane Glycoproteins George JN, Nurden AT, Phillips DR. (eds) Plenum press N. Y; 1985: 273-295
  • 96 Wheeler ME, Cox AC, Carroll RC. Retention of the glycoprotein Ilb-IIIa complex in the isolated platelet cytoskeleton. Effects of separable assembly of platelet pseudopodal and contractile cytoskeletons. J Clin Invest 1984; 74: 1080-1089
  • 97 Newman PJ, Hillery CA, Albrecht R, Parise LV, Berndt MC, Mazurov AV, Dunlop LC, Zhang J, Rittenhouse SE. Activation-dependent changes in human platelet PECAM-1: phosphorylation, cytoskeletal association, and surface membrane redistribution. J Cell Biol 1992; 119«: 239-246
  • 98 Grondin P, Plantavid M, Sultan C, Breton M, Mauco G, Chap H. Interaction of pp60c_sre, phospholipase C, inositol-lipids, and diacylglycerol kinases with the cytoskeletons of thrombin-stimulated platelets. J Biol Chem 1991; 266: 15705-15709
  • 99 Horvath AR, Muszbek L, Kellie S. Translocation of pp60c-src to the cytoskeleton during platelet aggregation. EMBO J 1992; 11: 855-861
  • 100 Zhang J, Fry ME, Waterfield MD, Jaken S, Liao L. Fox JEB, Ritten- house SE. Activated phosphoinositide 3-kinase associates with membrane skeleton in thrombin-exposed platelets. J Biol Chem 1992; 267: 4686-4692
  • 101 Oda A, Druker BJ, Smith M, Salzman EW. Association of pp60src with Triton X-100-insoluble residue in human platelets requires platelet aggregation and actin polymerization. J Biol Chem 1992; 267: 20075-20081
  • 102 Ramaschi G, Sinigaglia F, Torti M, Balduini C. Effect of cAMP on the association of low molecular weight GTP-binding proteins with platelet cytoskeleton. Biochem Biophvs Acta 1994; 1199: 20-26
  • 103 Nemoto Y, Namba T, Teru-uchi T, Ushikubi F, Mom N, Narumiya S. A rho gene product in human blood platelets. Identification of the platelet substrate for botulinum C3 ADP-ribosyltransferase as RhoA protein. J Biol Chem 1992; 267: 20916-20920
  • 104 Ridley AJ, Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 1992; 70: 389-399
  • 105 Zhang J, King WG, Dillon S, Hall A, Feig L, Rittenhouse SE. Activation of platelet phosphatidylinositide 3-kinase requires the small GTP-binding protein Rho. J Biol Chem 1993; 268: 22251-22254
  • 106 Fischer TH, Gatling MN, Lacal JC, White GCII. Rap IB. a cAMP-dependent protein kinase substrate associates with the platelet cytoskeleton. J Biol Chem 1990; 265: 19405-19408
  • 107 Torti M, Ramaschi G, Sinigaglia F, Lapetina EG, Balduini C. Glycoprotein IIB-IIIA and the translocation of rap2B to the platelet cytoskeleton. Proc Natl Acad Sci USA. 1994. in press
  • 108 Sinigaglia F, Bisio A, Torti M, Balduini CL, Bertolino G, Balduini C. Effect of GPIIb-IIIa complex ligands on calcium ion movement and cytoskeleton organization in activated platelets. Biochem Biophys Res Commun 1988; 154: 258-264
  • 109 Kouns WC, Fox CF, Lamoreaux WJ, Coons LB, Jennings LK. The effect of glycoprotein Ilb-IIIa receptor occupancy on the cytoskeleton of resting and activated platelets. J Biol Chem 1991; 266: 13891-900
  • 110 Sinigaglia F, Torti M, Ramaschi G, Balduini C. The occupancy of glycoprotein Ilb-IIIa complex modulates thrombin activation of human platelets. Biochem Biophys Acta 1989; 984: 225-230
  • 111 Fox JEB, Lipfert L, Clark EA, Reynolds CC, Austin CD, Brugge JB. On the role of the platelet membrane skeleton in mediating signal transduction. Association of GP Ilb-IIIa, pp60c-src, pp62c-ves, and the p21ras GTPase activating protein with the membrane skeleton. J Biol Chem 1993; 268: 25973-25984
  • 112 Torti M, Crouch MF, Lapetina EG. Epinephrine induces association of pp60src with G in human platelets. Biochem Biophys Res Commun 1992; 186: 440-447
  • 113 Crouch MF, Winegar DA, Lapetina EG. Epinephrine induces changes in the subcellular distribution of the inhibitory GTP-binding protein Giα-2 and a 38-kDa phosphorylated protein in human platelet. Proc Natl Acad Sci USA 1989; 86: 1776-1780
  • 114 Steen VM, Tysnes OB, Holmsen H. Synergism between thrombin and adrenaline (epinephrine) in human platelets. Biochem J 1988; 253: 581-586
  • 115 Siess W, Lapetina EG. Platelet aggregation induced by α2-adrenoreceptor and protein kinase C activation. Biochem J 1989; 263: 377-385