Thromb Haemost 1994; 71(05): 684-691
DOI: 10.1055/s-0038-1642505
Review Article
Schattauer GmbH Stuttgart

Factors Involved In the Plasminogen Activation System in Human Breast Tumours

László Damjanovich
1   The First Department of Surgery, University School of Medicine, Debrecen, Hungary
,
Csaba Turzó
2   Department of Pathology, University School of Medicine, Debrecen, Hungary
,
Róza Ádány
3   Department of Hygiene and Epidemiology, University School of Medicine, Debrecen, Hungary
› Author Affiliations
Further Information

Publication History

Received: 31 December 1992

Accepted after revision 10 February 1994

Publication Date:
26 July 2018 (online)

Summary

The plasminogen activation system is a delicately balanced assembly of enzymes which seems to have primary influence on tumour progression. The conversion of plasminogen into serine protease plasmin with fibrinolytic activity depends on the actual balance between plasminogen activators (urokinase type; u-PA and tissue type; t-PA) and their inhibitors (type 1 and 2 plasminogen activator inhibitors; PAI-1 and PAI-2). The purpose of this study was to determine the exact histological localization of all the major factors involved in plasminogen activation, and activation inhibition (plasmin system) in benign and malignant breast tumour samples. Our results show that factors of the plasmin system are present both in benign and malignant tumours. Cancer cells strongly labelled for both u-PA and t-PA, but epithelial cells of fibroadenoma samples were also stained for plasminogen activators at least as intensively as tumour cells in cancerous tissues. In fibroadenomas, all the epithelial cells were labelled for PAM. Staining became sporadic in malignant tumours, cells located at the periphery of tumour cell clusters regularly did not show reaction for PAI-1. In the benign tumour samples the perialveolar connective tissue stroma contained a lot of PAI-1 positive cells, showing characteristics of fibroblasts; but their number was strongly decreased in the stroma of malignant tumours. These findings indicate that the higher level of u-PA antigen, detected in malignant breast tumour samples by biochemical techniques, does not necessarily indicate increased u-PA production by tumour cells but it might be owing to the increased number of cells producing u-PA as well. In malignant tumours PAI-1 seems to be decreased in the frontage of malignant cell invasion; i.e. malignant cells at the host/tumour interface do not express PAI-1 in morphologically detectable quantity and in the peritumoural connective tissue the number of fibroblasts containing PAI-1 is also decreased.

 
  • References

  • 1 Martinez-Hernandez A. The extracellular matrix and neoplasia. Lab Invest 1988; 58: 609-12
  • 2 Ádány R, Szegedi A, Ablin RJ, Muszbek L. Fibrinolysis resistant fibrin deposits in lymph nodes with Hodgkin’s disease. Thromb Haemost 1988; 60: 293-7
  • 3 Muszbek L, Ádány R. Intratumoural fibrin stabilization. In: Eicosanoids, Lipid Peroxidation and Cancer. Nigam S. ed Heidelberg, Germany: Springer Verlag; 1988: 339-49
  • 4 Nagy JA, Brown LF, Senger DR, Lanir N, Van De Water L, Dvorak AM, Dvorak HF. Pathogenesis of tumour stroma generation: a critical role for leaky blood vessels and fibrin deposits. Biochim Biophys Acta 1988; 948: 305-26
  • 5 Dvorak HF, Senger DR, Dvorak AM. Fibrin as a component of the tumour stroma origins and biological significance. Cancer Metast Rev 1983; 2: 41-73
  • 6 Yuen P, Kwaan HC. Fibrinolytic activity in human tumour tissues. Cancer Invest 1983; 1: 369-78
  • 7 Tözsér J, Hamvas A, Rády P, Kertai P, Elödi P. Plasminogen activator and plasmin-like activities in experimental rat tumours. Acta Biochim Biophys Hung 1989; 24: 119-28
  • 8 Danø K, Andrcascn PA, Gondahl-Hanscn J, Kristcnscn P, Nielsen LS, Skriver L. Plasminogen activators, tissue degradation, and cancer. Adv Cancer Res 1985; 44: 139-266
  • 9 Duffy MJ. Plasminogen activators and cancer. Blood Coag Fibrinol 1990; 1: 681-7
  • 10 Thornes RD, Edlow DW, Wood S. Inhibition of locomotion of cancer cells in vivo by anticoagulant therapy. Johns Hopkins Med J 1968; 123: 305-10
  • 11 Zacharski LR, Henderson WG, Rickies FR, Forman WB, Cornell CJ, Forcier RJ, Edwards R, Headley E, Kim S-H, O’Donnell JR, O’Dell R, Tornyos K, Kwaan HC. Effect of warfarin on survival in small cell carcinoma of the lung. JAMA 1981; 245: 831-5
  • 12 Christman JK. Multiple forms of plasminogen activator. In: Biological markers of neoplasia: basic and applied aspects. Rudden RW. ed New York: Elsevier; 1978: 433-48
  • 13 Burtin P, Chavanel G, Andre J. The plasmin system in human colonic tumours: An immunofluorescence study. Int J Cancer 1985; 35: 307-14
  • 14 Gaffney PJ. Fibrinolysis. In: Haemostasis and Thrombosis. Bloom AL, Thomas DP. eds New York: Churchill Livingstone; 1987: 223-44
  • 15 Liotta LA, Goldfarb RH, Brundage R, Siegal GP, Terranova V, Garbisa S. Effect of plasminogen activator (urokinase), plasmin and thrombin on glycoprotein and collagenous components of basement membrane. Cancer Res 1981; 4: 4629-36
  • 16 Tryggvason K, Höyhtyä M, Salo T. Proteolytic degradation of extracellular matrix in tumour invasion. Biochim Biophys Acta 1987; 907: 191-217
  • 17 Davidson JF, Mc Nicol GP, Frank GL, Anderson TJ, Douglas AS. Plasminogen-activator-producing tumour. Br Med J 1969; 11: 88-91
  • 18 Correc P, Zhang S, Komano O, Laurent M, Burtin P. Visualization of the plasmin receptor on carcinoma cells. Int J Cancer 1992; 50: 767-71
  • 19 Christman JK. Multiple forms of plasminogen activator. In: Biological markers of neoplasia: basic and applied aspects. Rudden RW. ed New York, NY: Elsevier; 1978: 433-48
  • 20 Ellis V, Wun TC, Behrendt N, Ronne E, Danø K. Inhibition of receptor-bound urokinase by plasminogen-activator inhibitors. J Biol Chem 1990; 265: 9904-8
  • 21 Astedt B, Haegerstrand I, Lecander I. Cellular localisation of placental type plasminogen activator inhibitor in placenta. Thromb Haemost 1986; 56: 63-5
  • 22 Duffy MJ, O’Grady P. Plasminogen activator and cancer. Eur J Cancer Clin Oncol 1984; 20: 577-82
  • 23 Rijken DC, Collen D. Purification and characterization of the plasminogen activator secreted by human melanoma cells in culture. J Biol Chem 1981; 256: 7035-41
  • 24 Sappino A-P, Busso N, Belin D, Vassalli J-D. Increase of urokinase-type plasminogen activator gene expression in human lung and breast carcinomas. Cancer Res 1987; 47: 4043-6
  • 25 Kristensen P, Pyke C, Lund LR, Andreasen PA, Danø K. Plasminogen activator inhibitor-type 1 in Lewis lung carcinoma. Histochemistry 1990; 93: 559-66
  • 26 Nelson NF, Cieplak W, Dacus SC, Prager MD. Characterization of plasminogen activator from two human renal carcinoma cell lines. J Cell Physiol 1986; 126: 435-43
  • 27 Sumiyoshi K, Serizawa K, Urano T, Takada A, Baba S. Plasminogen activator system in human breast cancer. Int J Cancer 1992; 50: 345-8
  • 28 Reilly D, Andreasen PA, Duffy MJ. Urokinase-plasminogen activator in breast cancer: assay by both catalytic and immunoassay. Blood Coag Fibrinol 1991; 2: 47-50
  • 29 Clavel C, Chavanel G, Birembaut P. Detection of the plasmin system in human mammary pathology using immunofluorescence. Cancer Res 1986; 46: 43-7
  • 30 Reilly D, Christensen L, Duch M, Nolan N, Duffy MJ, Andreasen PA. Type-1 plasminogen activator inhibitor in human breast carcinomas. Int J Cancer 1992; 50: 208-14
  • 31 Astedt B, Holmberg L, Lecander I, Thorell J. Radioimmunoassay of urokinase for quantification of plasminogen activators released in ovarian tumour cultures. Eur J Cancer 1981; 17: 239-44
  • 32 Stigbrand T, Frangsmyr L, Bergsdorf N, Wallen P. Characterization of monoclonal antibodies to human tissue-type plasminogen activator: catalytic inhibition and one-two chain discriminatory reactivities. Thromb Haemost 1989; 62: 742-7
  • 33 Declerck PJ, Alessi MC, Verstreken M, Kruithof EK, Juhan Vague I, Collen D. Measurement of plasminogen activator inhibitor 1 in biological fluids with a murine monoclonal antibody-based enzyme-linked immunosorbent assay. Blood 1988; 71: 220-5
  • 34 Astedt B, Lecander I, Brodin T, Lundblad A, Low K. Purification of a specific placental plasminogen activator inhibitor by monoclonal antibody and its complex formation with plasminogen activator. Thromb Haemost 1985; 53: 122-5
  • 35 Jin L, Nakajima M, Nicolson GL. Immunochemical localization of heparanase in mouse and human melanomas. Int J Cancer 1990; 45: 1088-95
  • 36 Malone JM, Gervin AS, Moore WS, Keown K. Tumour interaction with the fibrinolytic system. J Surg Res 1979; 26: 581-9
  • 37 Wang BS, Mc Laughling GA, Richie JP. Correlation of the production of plasminogen activator with tumour metastasis in B16 melanoma cell lines. Cancer Res 1980; 40: 228-32
  • 38 Carlsen SA, Ramshaw IA, Warrington RC. Involvement of plasminogen activator production with tumour metastasis in a rat model. Cancer Res 1984; 44: 3012-6
  • 39 Skriver L, Larsson LI, Kielberg V, Nielsen LS, Andreasen PA, Kristensen P, Danø K. Immunocytochemical localization of urokinase-type plasminogen activator in Lewis lung carcinoma. J Cell Biol 1984; 99: 753-8
  • 40 Ossowski L, Reich E. Antibodies to plasminogen activator inhibit tumour metastasis. Cell 1983; 35: 611-9
  • 41 Wigler M, Weinstein IB. Tumour promoter induces plasminogen activator. Nature 1976; 259: 232-3
  • 42 Unkeless JC, Tobia A, Ossowski L, Quigley JP, Rifkin DB, Reich E. An enzymatic function associated with transformation of fibroblasts by oncogenic viruses. I. Chick embryo fibroblast cultures transformed by anion RNA tumour viruses. J Exp Med 1973; 137: 85-111
  • 43 Duffy MJ, Reilly D, O’Sullivan C, O’Higgins N, Fennelly JJ, Andreasen P. Urokinase-plasminogen activator, a new and independent prognostic marker in breast cancer. Cancer Res 1990; 50: 6827-9
  • 44 Sumiyoshi K, Baba S, Sakaguchi S, Urano T, Takada Y, Takada A. Increase in levels of plasminogen activator and type-1 plasminogen activator inhibitor in human breast cancer. Possible roles in tumour progression and metastasis. Thrombos Res 1991; 63: 59-71
  • 45 Kreipe H, Radrun HJ, Parwaresch MR, Haislip A, Hansmann ML. Ki-M7 monoclonal antibody specific for myelomonocytic cell lineage and macrophages in human. J Histochem Cytochem 1987; 35: 1117-26
  • 46 Ádány R, Kappelmayer J, Muszbek L. Expression of FXIII subunit a in different types of macrophages. Adv Biosci 1987; 66: 323-33
  • 47 Ádány R, Glukhova AM, Kabakov AY, Muszbek L. Characterization of human connective tissue cells containing factor XIII subunit a. J Clin Pathol 1988; 41: 49-56
  • 48 Pöllänen J, Saksela O, Salonen E-M, Andreasen P, Nielsen L, Danø K, Vaheri A. Distinct localizations of urokinase-type plasminogen activator and its type 1 inhibitor under cultured human fibroblasts and sarcoma cells. J Cell Biol 1987; 104: 1085-96
  • 49 Ádány R, Belkin A, Vasilevskaya T, Muszbek L. Identification of blood coagulation factor XIII in human peritoneal macrophages. Eur J Cell Biol 1985; 38: 171-3
  • 50 Lazarides E. Intermediate filaments: A chemically heterogeneous, developmentally regulated class of proteins. Ann Rev Biochem 1982; 51: 219-50
  • 51 Ebell W, Castro-Malaspina H, Moore MAS, O’Reilly RJ. Depletion of stromal cell elements in human marrow grafts separated by soybean agglutinin. Blood 1985; 65: 1105-11
  • 52 Jaffe EA, Hoyer LW, Nachman RL. Synthesis of antihemophilic factor antigen by cultured human endothelial cells. J Clin Invest 1973; 52: 2757
  • 53 Kreipe H, Radzun HJ, Parwaresch MR, Haislip A, Hansmann ML. Ki-M7 monoclonal antibody specific for myelomonocytic cell lineage and macrophages in human. J Histochem Cytochem 1987; 35: 1117-26
  • 54 Steel CM, Human MHC. Class II Antigens: Genetics. In: Structure and Function. New York, NY: John Wiley and Sons; 1984
  • 55 Bannasch P, Zerban H, Schmid E, Franke WW. Liver tumors distinguished by immunofluorescence microscopy with antibodies to proteins of intermediate-sized filaments. Proc Natl Acad Sci USA 1980; 77: 4948-52