Neuropediatrics 2018; 49(04): 246-255
DOI: 10.1055/s-0038-1645884
Original Article
Georg Thieme Verlag KG Stuttgart · New York

Multiple Causes of Pediatric Early Onset Chorea—Clinical and Genetic Approach

Lubov Blumkin
1   Pediatric Movement Disorders Clinic, Wolfson Medical Center, Holon, Israel
2   Pediatric Neurology Unit, Wolfson Medical Center, Holon, Israel
3   Metabolic-Neurogenetic Clinic, Wolfson Medical Center, Holon, Israel
4   Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
,
Tally Lerman-Sagie
2   Pediatric Neurology Unit, Wolfson Medical Center, Holon, Israel
3   Metabolic-Neurogenetic Clinic, Wolfson Medical Center, Holon, Israel
4   Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
,
Ana Westenberger
5   Institute of Neurogenetics, University of Lubeck, Lubeck, Germany
,
Hilla Ben-Pazi
6   Pediatric Neurology Unit, Shaare Zedek Medical Center, Jerusalem, Israel
,
Ayelet Zerem
2   Pediatric Neurology Unit, Wolfson Medical Center, Holon, Israel
3   Metabolic-Neurogenetic Clinic, Wolfson Medical Center, Holon, Israel
4   Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
,
Keren Yosovich
3   Metabolic-Neurogenetic Clinic, Wolfson Medical Center, Holon, Israel
7   Rina Mor Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel
8   Molecular Genetics Laboratory, Wolfson Medical Center, Holon, Israel
,
Dorit Lev
3   Metabolic-Neurogenetic Clinic, Wolfson Medical Center, Holon, Israel
4   Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
7   Rina Mor Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel
› Author Affiliations
Further Information

Publication History

14 November 2017

01 March 2018

Publication Date:
25 May 2018 (online)

Abstract

Objective This article elucidates a clinical and genetic approach to pediatric early-onset chorea in patients with normal neuroimaging.

Methods We retrospectively studied patients with onset hyperkinetic movement disorders. Only children with onset of chorea in the first 3 years of life were included, those with an abnormal magnetic resonance imaging (MRI) or electroencephalogram (EEG) were excluded.

We studied the movement disorder phenotype by clinical examination and by interpretation of videos and compared our data to the literature.

Results Four patients, aged 2 to 13 years, were diagnosed. Abnormal involuntary movements appeared between the ages of 6 months to 3 years in association with developmental delay. One patient has a close relative with NKX2.1-related chorea. One patient is from Iraqi-Jewish origin. Facial twitches and nocturnal dyskinetic attacks were observed in one.

The unique clinical presentation and family history enabled genetic diagnosis by molecular analysis of a specific mutation in two (NKX2.1, OPA3) and Sanger sequencing of a target gene in one (ADCY5). One patient was diagnosed by whole-exome sequencing (WES) (GNAO1).

Conclusion By carefully recording the phenotype and genetic background, a single gene can be suspected in some cases. In the rest, we suggest multigene panels or WES study.

 
  • References

  • 1 Sanger TD, Chen D, Fehlings DL. , et al. Definition and classification of hyperkinetic movements in childhood. Mov Disord 2010; 25 (11) 1538-1549
  • 2 Mencacci NE, Carecchio M. Recent advances in genetics of chorea. Curr Opin Neurol 2016; 29 (04) 486-495
  • 3 Lee MS, Marsden CD. Movement disorders following lesions of the thalamus or subthalamic region. Mov Disord 1994; 9 (05) 493-507
  • 4 Gilbert DL. Acute and chronic chorea in childhood. Semin Pediatr Neurol 2009; 16 (02) 71-76
  • 5 Kobayashi Y, Tohyama J, Kato M. , et al. High prevalence of genetic alterations in early-onset epileptic encephalopathies associated with infantile movement disorders. Brain Dev 2016; 38 (03) 285-292
  • 6 Breedveld GJ, Percy AK, MacDonald ME. , et al. Clinical and genetic heterogeneity in benign hereditary chorea. Neurology 2002; 59 (04) 579-584
  • 7 Gras D, Jonard L, Roze E. , et al. Benign hereditary chorea: phenotype, prognosis, therapeutic outcome and long term follow-up in a large series with new mutations in the TITF1/NKX2-1 gene. J Neurol Neurosurg Psychiatry 2012; 83 (10) 956-962
  • 8 Peall KJ, Kurian MA. Benign hereditary chorea: an update. Tremor Other Hyperkinet Mov (N Y) 2015; 5: 314
  • 9 Peall KJ, Lumsden D, Kneen R. , et al. Benign hereditary chorea related to NKX2.1: expansion of the genotypic and phenotypic spectrum. Dev Med Child Neurol 2014; 56 (07) 642-648
  • 10 Glik A, Vuillaume I, Devos D, Inzelberg R. Psychosis, short stature in benign hereditary chorea: a novel thyroid transcription factor-1 mutation. Mov Disord 2008; 23 (12) 1744-1747
  • 11 Carré A, Szinnai G, Castanet M. , et al. Five new TTF1/NKX2.1 mutations in brain-lung-thyroid syndrome: rescue by PAX8 synergism in one case. Hum Mol Genet 2009; 18 (12) 2266-2276
  • 12 Thorwarth A, Schnittert-Hübener S, Schrumpf P. , et al. Comprehensive genotyping and clinical characterisation reveal 27 novel NKX2-1 mutations and expand the phenotypic spectrum. J Med Genet 2014; 51 (06) 375-387
  • 13 Patel NJ, Jankovic J. NKX2–1-related disorders. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Ledbetter N, Mefford HC, Smith RJH, Stephens K. , eds. GeneReviews® [Internet]. Seattle, WA: University of Washington, Seattle; 1993–2017. 2014. Feb 20 [updated 2016 Jul 29]
  • 14 Barnett CP, Mencel JJ, Gecz J. , et al. Choreoathetosis, congenital hypothyroidism and neonatal respiratory distress syndrome with intact NKX2-1. Am J Med Genet A 2012; 158A (12) 3168-3173
  • 15 Chen YZ, Matsushita MM, Robertson P. , et al. Autosomal dominant familial dyskinesia and facial myokymia: single exome sequencing identifies a mutation in adenylyl cyclase 5. Arch Neurol 2012; 69 (05) 630-635
  • 16 Mencacci NE, Erro R, Wiethoff S. , et al. ADCY5 mutations are another cause of benign hereditary chorea. Neurology 2015; 85 (01) 80-88
  • 17 Chang FC, Westenberger A, Dale RC. , et al. Phenotypic insights into ADCY5-associated disease. Mov Disord 2016; 31 (07) 1033-1040
  • 18 Fernandez M, Raskind W, Wolff J. , et al. Familial dyskinesia and facial myokymia (FDFM): a novel movement disorder. Ann Neurol 2001; 49 (04) 486-492
  • 19 Chen YZ, Friedman JR, Chen DH. , et al. Gain-of-function ADCY5 mutations in familial dyskinesia with facial myokymia. Ann Neurol 2014; 75 (04) 542-549
  • 20 Chen DH, Méneret A, Friedman JR. , et al. ADCY5-related dyskinesia: Broader spectrum and genotype-phenotype correlations. Neurology 2015; 85 (23) 2026-2035
  • 21 Westenberger A, Max C, Brüggemann N. , et al. Alternating hemiplegia of childhood as a new presentation of adenylate cyclase 5-mutation-associated disease: a report of two cases. J Pediatr 2017; 181: 306-308.e1
  • 22 Shaw C, Hisama F, Friedman J, Bird TD. ADCY5-Related Dyskinesia. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Ledbetter N, Mefford HC, Smith RJH, Stephens K. , eds GeneReviews® [Internet]. Seattle, WA: University of Washington, Seattle; 1993–2017. 2014. Dec 18.
  • 23 Nakamura K, Kodera H, Akita T. , et al. De Novo mutations in GNAO1, encoding a Gαo subunit of heterotrimeric G proteins, cause epileptic encephalopathy. Am J Hum Genet 2013; 93 (03) 496-505
  • 24 Saitsu H, Fukai R, Ben-Zeev B. , et al. Phenotypic spectrum of GNAO1 variants: epileptic encephalopathy to involuntary movements with severe developmental delay. Eur J Hum Genet 2016; 24 (01) 129-134
  • 25 Menke LA, Engelen M, Alders M, Odekerken VJ, Baas F, Cobben JM. Recurrent GNAO1 mutations associated with developmental delay and a movement disorder. J Child Neurol 2016; 31 (14) 1598-1601
  • 26 Kulkarni N, Tang S, Bhardwaj R, Bernes S, Grebe TA. Progressive movement disorder in brothers carrying a GNAO1 mutation responsive to deep brain stimulation. J Child Neurol 2016; 31 (02) 211-214
  • 27 Ananth AL, Robichaux-Viehoever A, Kim YM. , et al. Clinical course of six children with GNAO1 mutations causing a severe and distinctive movement disorder. Pediatr Neurol 2016; 59: 81-84
  • 28 Yilmaz S, Turhan T, Ceylaner S, Gökben S, Tekgul H, Serdaroglu G. Excellent response to deep brain stimulation in a young girl with GNAO1-related progressive choreoathetosis. Childs Nerv Syst 2016; 32 (09) 1567-1568
  • 29 Costeff H, Gadoth N, Apter N, Prialnic M, Savir H. A familial syndrome of infantile optic atrophy, movement disorder, and spastic paraplegia. Neurology 1989; 39 (04) 595-597
  • 30 Ho G, Walter JH, Christodoulou J. Costeff optic atrophy syndrome: new clinical case and novel molecular findings. J Inherit Metab Dis 2008; 31 (Suppl. 02) S419-S423
  • 31 Elpeleg ON, Costeff H, Joseph A, Shental Y, Weitz R, Gibson KM. 3-Methylglutaconic aciduria in the Iraqi-Jewish ‘optic atrophy plus’ (Costeff) syndrome. Dev Med Child Neurol 1994; 36 (02) 167-172
  • 32 Anikster Y, Kleta R, Shaag A, Gahl WA, Elpeleg O. Type III 3-methylglutaconic aciduria (optic atrophy plus syndrome, or Costeff optic atrophy syndrome): identification of the OPA3 gene and its founder mutation in Iraqi Jews. Am J Hum Genet 2001; 69 (06) 1218-1224
  • 33 Kleta R, Skovby F, Christensen E, Rosenberg T, Gahl WA, Anikster Y. 3-Methylglutaconic aciduria type III in a non-Iraqi-Jewish kindred: clinical and molecular findings. Mol Genet Metab 2002; 76 (03) 201-206
  • 34 Reynier P, Amati-Bonneau P, Verny C. , et al. OPA3 gene mutations responsible for autosomal dominant optic atrophy and cataract. J Med Genet 2004; 41 (09) e110
  • 35 Arif B, Kumar KR, Seibler P. , et al. A novel OPA3 mutation revealed by exome sequencing: an example of reverse phenotyping. JAMA Neurol 2013; 70 (06) 783-787
  • 36 Yahalom G, Anikster Y, Huna-Baron R. , et al. Costeff syndrome: clinical features and natural history. J Neurol 2014; 261 (12) 2275-2282
  • 37 Carmi N, Lev D, Leshinsky-Silver E. , et al. Atypical presentation of Costeff syndrome-severe psychomotor involvement and electrical status epilepticus during slow wave sleep. Eur J Paediatr Neurol 2015; 19 (06) 733-736
  • 38 Sofer S, Schweiger A, Blumkin L. , et al. The neuropsychological profile of patients with 3-methylglutaconic aciduria type III, Costeff syndrome. Am J Med Genet B Neuropsychiatr Genet 2015; 168B (03) 197-203
  • 39 Mencacci NE, Kamsteeg E-J, Nakashima K. , et al. De novo mutations in PDE10A cause childhood-onset chorea with bilateral striatal lesions. Am J Hum Genet 2016; 98 (04) 763-771
  • 40 Diggle CP, Sukoff Rizzo SJ, Popiolek M. , et al. Biallelic mutations in PDE10A lead to loss of striatal PDE10A and a hyperkinetic movement disorder with onset in infancy. Am J Hum Genet 2016; 98 (04) 735-743