Thromb Haemost 1990; 64(04): 589-593
DOI: 10.1055/s-0038-1647363
Original Article
Schattauer GmbH Stuttgart

Synthetic RGDS-Containing Peptides of von Willebrand Factor Inhibit Platelet Adhesion to Collagen

Edith Fressinaud
*   Laboratoire d’Hémostase, CDTS, Angers, France
,
Jean Pierre Girma
**   INSERM U.143, Hopital Bicetre, le Kremlin-Bicêtre, France
,
J Evan Sadler
***   Howard Hughes Medical Institute, Washington University, St. Louis, MO, USA
,
Hans R Baumgartner
****   Pharma Research, Hoffmann-La Roche and Co, Basel, Switzerland
,
Dominique Meyer
**   INSERM U.143, Hopital Bicetre, le Kremlin-Bicêtre, France
› Author Affiliations
Further Information

Publication History

Received 08 August 1988

Accepted after revision14 July 1990

Publication Date:
25 July 2018 (online)

Preview

Summary

We compared the effect of a synthetic dodecapeptide of residues 400-411 of the Γ chain of fibrinogen (Γ Fg 400-411) and of three synthetic peptides (15 to 18 aminoacids), of human von Willebrand Factor (vWF), containing the 1744-1747 Arg-Gly-Asp-Ser (RGDS) sequence, upon platelet adhesion to collagen in flowing blood. Both types of peptides are known to inhibit the binding of adhesive proteins to platelet membrane glycoprotein Ilb/IIIa (GPIIb/IIIa). Collagen was coated onto plastic cover slips and exposed in parallel-plate perfusion chambers to reconstituted human blood at various shear rates for 5 min at 37 °C. At a shear rate of 2,600 s−1, RGDS peptides inhibited platelet adhesion to collagen in a dose-dependent manner and appeared to be more potent inhibitors than the Γ Fg 400-411 on a molar basis. No synergetic effect between RGDS and Γ Fg 400-411 peptides was observed. These results suggest that the RGDS peptides affect adhesion by inhibiting the GPIIb/IIIa-vWF interaction and confirm the involvement of this platelet receptor in vWF-mediated platelet adhesion to collagen at high shear rate.