J Neurol Surg B Skull Base 2019; 80(01): 010-017
DOI: 10.1055/s-0038-1655759
Original Article
Georg Thieme Verlag KG Stuttgart · New York

Proposal for Modification of Cahan's Criteria Utilizing Molecular Genetic Analyses for Cases without Baseline Histopathology: A Unique Method Applicable to Primary Radiosurgery

Aaron E. Rusheen
1   Medical Scientist Training Program, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, United States
,
James B. Smadbeck
2   Biomarker Discovery Program, Center of Individualized Medicine, Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States
,
Lisa A. Schimmenti
3   Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota, United States
,
Eric W. Klee
2   Biomarker Discovery Program, Center of Individualized Medicine, Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States
,
Michael J. Link
3   Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota, United States
4   Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, United States
,
George Vasmatzis
2   Biomarker Discovery Program, Center of Individualized Medicine, Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States
,
Matthew L. Carlson
3   Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota, United States
4   Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, United States
› Author Affiliations
Further Information

Publication History

11 March 2018

17 April 2018

Publication Date:
31 May 2018 (online)

Abstract

Background Cahan's criteria have been utilized since 1948 to establish causality between prior radiation treatment and the development of secondary malignancy. One major criterion specifies that histological and radiographic evidence collected before and after radiation treatment must confirm separate tumor types; however, pretreatment biopsy is rarely obtained prior to radiosurgery for vestibular schwannoma and many other skull base and cranial lesions. Therefore, in these cases Cahan's criteria cannot be validly applied.

Objective This article proposes an update to Cahan's criteria using modern molecular genetic analysis for cases lacking baseline histopathology.

Methods Mate-pair sequencing and whole exome sequencing of a cerebellopontine angle undifferentiated high-grade pleomorphic sarcoma (UHGPS) that developed after stereotactic radiosurgery of a presumed benign vestibular schwannoma.

Results Mate-pair sequencing and whole exome sequencing of the sarcoma revealed complex chromosomal aberrations. Notably, the tumor contained a deletion in the NF2 gene at 22q12 and an in-frame deletion on exon 5 of the remaining copy of NF2. Biallelic events impacting NF2 are atypical for UHGPS but are characteristic for vestibular schwannoma. These findings help support the conclusion that the UHGPS arose from a benign vestibular schwannoma all along.

Conclusions Next-generation sequencing can be successfully applied to a radiation-induced sarcoma when both the original and malignant tumors harbor separate signature genetic markers. As our understanding of the genetic profile of various tumors expand, we believe that next-generation sequencing and other genomic tools will play an increasingly important role in establishing causality between radiation and the development of secondary malignancy.

Previous Presentations

None.


Financial Support

Mayo Clinic Center for Individualized Medicine.


 
  • References

  • 1 Pioneer in X-Ray Therapy. News of science. Science 1957; 125 (3236): 18-22
  • 2 Williams F. Roentgen Rays in Medicine and Surgery . 2nd ed: New York, NY: Macmillan; 1902
  • 3 Belot J. Radiotherapy in Skin Disease . London, United Kingdom: Rebman; 1905
  • 4 Halperin EC, Perez CA, Brady LW, Wazer DE. Perez & Brady's Principles and Practice of Radiation Oncology . 6th ed: Philadelphia, PA: Lippincott Williams & Wilkins; 2013
  • 5 Frieben H. Demonstration eines Cancroid des rechten Handrueckens, das sich nach langdauernder Einwirkung von Roentgenstrahlen entwickelt hatte. Fortschr Geb Rontgenstr 1902; 6: 106-111
  • 6 Cahan WG, Woodard HQ, Higinbotham NL, Stewart FW, Coley BL. Sarcoma arising in irradiated bone; report of 11 cases. Cancer 1948; 1 (01) 3-29
  • 7 Murray EM, Werner D, Greeff EA, Taylor DA. Postradiation sarcomas: 20 cases and a literature review. Int J Radiat Oncol Biol Phys 1999; 45 (04) 951-961
  • 8 Drucker TM, Johnson SH, Murphy SJ, Cradic KW, Therneau TM, Vasmatzis G. BIMA V3: an aligner customized for mate pair library sequencing. Bioinformatics 2014; 30 (11) 1627-1629
  • 9 Harrow J, Frankish A, Gonzalez JM. , et al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res 2012; 22 (09) 1760-1774
  • 10 Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25 (14) 1754-1760
  • 11 McKenna A, Hanna M, Banks E. , et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010; 20 (09) 1297-1303
  • 12 Larson DE, Harris CC, Chen K. , et al. SomaticSniper: identification of somatic point mutations in whole genome sequencing data. Bioinformatics 2012; 28 (03) 311-317
  • 13 Kocher JP, Quest DJ, Duffy P. , et al. The Biological Reference Repository (BioR): a rapid and flexible system for genomics annotation. Bioinformatics 2014; 30 (13) 1920-1922
  • 14 Schmitt WR, Carlson ML, Giannini C, Driscoll CL, Link MJ. Radiation-induced sarcoma in a large vestibular schwannoma following stereotactic radiosurgery: case report. Neurosurgery 2011; 68 (03) E840-E846 , discussion E846
  • 15 Rouleau GA, Merel P, Lutchman M. , et al. Alteration in a new gene encoding a putative membrane-organizing protein causes neuro-fibromatosis type 2. Nature 1993; 363 (6429): 515-521
  • 16 Trofatter JA, MacCollin MM, Rutter JL. , et al. A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell 1993; 72 (05) 791-800
  • 17 Jacoby LB, MacCollin M, Barone R, Ramesh V, Gusella JF. Frequency and distribution of NF2 mutations in schwannomas. Genes Chromosomes Cancer 1996; 17 (01) 45-55
  • 18 Bian LG, Tirakotai W, Sun QF, Zhao WG, Shen JK, Luo QZ. Molecular genetics alterations and tumor behavior of sporadic vestibular schwannoma from the People's Republic of China. J Neurooncol 2005; 73 (03) 253-260
  • 19 Stemmer-Rachamimov AO, Xu L, Gonzalez-Agosti C. , et al. Universal absence of merlin, but not other ERM family members, in schwannomas. Am J Pathol 1997; 151 (06) 1649-1654
  • 20 Lee JD, Kwon TJ, Kim UK, Lee WS. Genetic and epigenetic alterations of the NF2 gene in sporadic vestibular schwannomas. PLoS One 2012; 7 (01) e30418
  • 21 Havik AL, Bruland O, Myrseth E. , et al. Genetic landscape of sporadic vestibular schwannoma. J Neurosurg 2018; 128 (03) 911-922
  • 22 Chen H, Xue L, Wang H, Wang Z, Wu H. Differential NF2 gene status in sporadic vestibular schwannomas and its prognostic impact on tumour growth patterns. Sci Rep 2017; 7 (01) 5470
  • 23 Agnihotri S, Jalali S, Wilson MR. , et al. The genomic landscape of schwannoma. Nat Genet 2016; 48 (11) 1339-1348
  • 24 Lassaletta L, Torres-Martín M, Peña-Granero C. , et al. NF2 genetic alterations in sporadic vestibular schwannomas: clinical implications. Otol Neurotol 2013; 34 (07) 1355-1361
  • 25 Torres-Martin M, Lassaletta L, San-Roman-Montero J. , et al. Microarray analysis of gene expression in vestibular schwannomas reveals SPP1/MET signaling pathway and androgen receptor deregulation. Int J Oncol 2013; 42 (03) 848-862
  • 26 Hadfield KD, Smith MJ, Urquhart JE. , et al. Rates of loss of heterozygosity and mitotic recombination in NF2 schwannomas, sporadic vestibular schwannomas and schwannomatosis schwannomas. Oncogene 2010; 29 (47) 6216-6221
  • 27 Lewin J, Garg S, Lau BY. , et al. Identifying actionable variants using next generation sequencing in patients with a historical diagnosis of undifferentiated pleomorphic sarcoma. Int J Cancer 2018; 142 (01) 57-65
  • 28 Pérot G, Chibon F, Montero A. , et al. Constant p53 pathway inactivation in a large series of soft tissue sarcomas with complex genetics. Am J Pathol 2010; 177 (04) 2080-2090
  • 29 Chibon F, Mairal A, Fréneaux P. , et al. The RB1 gene is the target of chromosome 13 deletions in malignant fibrous histiocytoma. Cancer Res 2000; 60 (22) 6339-6345
  • 30 Mandahl N. Cytogenetics and molecular genetics of bone and soft tissue tumors. Adv Cancer Res 1996; 69: 63-99
  • 31 Choong PF, Mandahl N, Mertens F. , et al. 19p+ marker chromosome correlates with relapse in malignant fibrous histiocytoma. Genes Chromosomes Cancer 1996; 16 (02) 88-93
  • 32 Rydholm A, Mandahl N, Heim S, Kreicbergs A, Willén H, Mitelman F. Malignant fibrous histiocytomas with a 19p+ marker chromosome have increased relapse rate. Genes Chromosomes Cancer 1990; 2 (04) 296-299
  • 33 Mertens F, Fletcher CD, Dal Cin P. , et al. Cytogenetic analysis of 46 pleomorphic soft tissue sarcomas and correlation with morphologic and clinical features: a report of the CHAMP Study Group. Chromosomes and MorPhology. Genes Chromosomes Cancer 1998; 22 (01) 16-25
  • 34 Silveira SM, Villacis RA, Marchi FA. , et al. Genomic signatures predict poor outcome in undifferentiated pleomorphic sarcomas and leiomyosarcomas. PLoS One 2013; 8 (06) e67643
  • 35 Mahboubi H, Sahyouni R, Moshtaghi O. , et al. CyberKnife for treatment of vestibular schwannoma: a meta-analysis. Otolaryngol Head Neck Surg 2017; 157 (01) 7-15
  • 36 Persson O, Bartek Jr J, Shalom NB, Wangerid T, Jakola AS, Förander P. Stereotactic radiosurgery vs. fractionated radiotherapy for tumor control in vestibular schwannoma patients: a systematic review. Acta Neurochir (Wien) 2017; 159 (06) 1013-1021
  • 37 Loeffler JS, Niemierko A, Chapman PH. Second tumors after radiosurgery: tip of the iceberg or a bump in the road?. Neurosurgery 2003; 52 (06) 1436-1440 , discussion 1440–1442
  • 38 Kondziolka D. Radiation-associated sarcoma?. Neurosurgery 2011; 69 (03) E786 , author reply 787
  • 39 Petrilli AM, Fernández-Valle C. Role of Merlin/NF2 inactivation in tumor biology. Oncogene 2016; 35 (05) 537-548
  • 40 Evans DG, Huson SM, Donnai D. , et al. A clinical study of type 2 neurofibromatosis. Q J Med 1992; 84 (304) 603-618
  • 41 Delattre O, Zucman J, Plougastel B. , et al. Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature 1992; 359 (6391): 162-165
  • 42 Welling DB, Lasak JM, Akhmametyeva E, Ghaheri B, Chang LS. cDNA microarray analysis of vestibular schwannomas. Otol Neurotol 2002; 23 (05) 736-748
  • 43 Aarhus M, Bruland O, Sætran HA, Mork SJ, Lund-Johansen M, Knappskog PM. Global gene expression profiling and tissue microarray reveal novel candidate genes and down-regulation of the tumor suppressor gene CAV1 in sporadic vestibular schwannomas. Neurosurgery 2010; 67 (04) 998-1019 , discussion 1019
  • 44 Welling DB. Clinical manifestations of mutations in the neurofibromatosis type 2 gene in vestibular schwannomas (acoustic neuromas). Laryngoscope 1998; 108 (02) 178-189