Osteologie 2018; 27(02): 78-82
DOI: 10.1055/s-0038-1656918
Ernährung und Knochengesundheit
Schattauer GmbH

Die Rolle der nahrungsbedingten Säurebelastung für den Knochen

Role of nutrition-dependent acid load for bone health
T. Remer
1   DONALD Studie Dortmund, Außenlabor des Instituts für Ernährungs- und Lebensmittelwissenschaften (IEL) der Universität Bonn, Dortmund
› Author Affiliations
Further Information

Publication History

eingereicht: 19 January 2018

angenommen: 09 February 2018

Publication Date:
14 May 2018 (online)

Zusammenfassung

Durch Ernährungseinflüsse auf den Säure-Basen-Status lassen sich nicht nur der Urin pH-Wert und damit das Nierensteinrisiko beeinflussen. Vielmehr hat eine hohe nutritive Säurelast auch Auswirkungen auf präventivmedizinische relevante funktionelle Outcomes wie den Knochenstatus. Klinisch manifeste Azidosen gehen regelmäßig mit überhöhter Kalziumausscheidung, negativer Kalziumbilanz und deutlichem Knochenmineralverlust einher. Auch bei sogenannten milden metabolisch kompensierten Azidoseformen mit Serum-Bikarbonat-Spiegeln und Blut-pH Werten im Normalbereich, wie sie bei hoher Eiweißzufuhr und gleichzeitig sehr geringem Obst- und Gemüseverzehr auftreten können, findet sich gehäuft ein verschlechterter Knochenstatus. Entsprechende Ergebnisse aus prospektiv kontrollierten Beobachtungs- und randomisiert-kontrollierten Interventionsstudien an Erwachsenen werden kurz vorgestellt und bewertet, ebenso wie Langzeitbeobachtungen an gesunden Kindern. Da bei nutritiv hoher Säurebelastung zwar erhöhte renale Kalziumverluste auftreten, die Kalziumbilanz aber nicht per se negativ ist, kann eine verminderte Kalziumverfügbarkeit als Hauptursache für eine reduzierte Knochenmasse unter Ernährung mit hoher Säurelast ausgeschlossen werden. Stattdessen wird die bereits bei milder Azidose oder erhöhter Netto-Säureausscheidung beobachtbare Steigerung der Kortisol-Sekretion als ein wahrscheinlicher Mechanismus für präventivmedizinisch relevante Langzeitbeeinträchtigungen des Skelettsystems diskutiert.

Summary

Nutrition does not only impact via alterations in acid base status on urine pH and the risk of kidney stones. A high dietary acid load also influences preventive-medically relevant functional outcomes, of which one is bone status. Clinical manifest acidoses are regularly paralleled by excess calcium excretion, negative calcium balance, and bone mineral loss. Also, in mild metabolically compensated forms of acidosis with serum bicarbonate and urine pH levels still in the normal range, as can develop with high protein and low fruit and vegetable intakes, an impaired bone status is frequently seen. Corresponding results from prospective controlled observational and randomized controlled interventional studies on bone status in adults are shortly presented as well as long-term observations in healthy children. As renal calcium losses, but not per se negative calcium balances do regularly occur with high dietary acid loads, a reduced availability of calcium is rather not a major cause, responsible for lower bone mass under acidogenic diets. Instead, an alternative endocrine metabolic mechanism is discussed as probable underlying cause for long-term impairment of bone status through habitual high dietary acid intake.

 
  • Literatur

  • 1 Frassetto LA, Todd KM, Morris Jr RC, Sebastian A. Estimation of net endogenous noncarbonic acid production in humans from diet potassium and protein contents. Am J Clin Nutr 1998; 68: 576-583.
  • 2 Esche J, Shi L, Sánchez-Guijo A. et al. Higher dietdependent renal acid load associates with higher glucocorticoid secretion and potentially bioactive free glucocorticoids in healthy children. Kidney Int 2016; 90: 325-333.
  • 3 Khairallah P, Isakova T, Asplin J, Hamm L. et al. Chronic Renal Insufficiency Cohort (CRIC) Study Investigators. Acid Load and Phosphorus Homeostasis in CKD. Am J Kidney Dis 2017; 70: 541-550.
  • 4 Khairallah P, Isakova T, Asplin J, Hamm L. et al. Chronic Renal Insufficiency Cohort (CRIC) Study Investigators. Acid Load and Phosphorus Homeostasis in CKD. Am J Kidney Dis 2017; 70: 541-550.
  • 5 Remer T, Manz F. Potential renal acid load of foods and its influence on urine pH. J Am Diet Assoc 1995; 95: 791-797.
  • 6 Curthoys NP, Moe OW. Proximal tubule function and response to acidosis. Review. Clin J Am Soc Nephrol 2014; 09: 1627-1638.
  • 7 Yuan FL, Xu MH, Li X. et al. The Roles of Acidosis in Osteoclast Biology. Front Physiol 2016; 07: 222.
  • 8 Ahn H, Kim JM, Lee K. et al. Extracellular acidosis accelerates bone resorption by enhancing osteoclast survival, adhesion, and migration. Biochem Biophys Res Commun 2012; 418: 144-148.
  • 9 Brandao-Burch A, Utting JC, Orriss IR, Arnett TR. Acidosis inhibits bone formation by osteoblasts in vitro by preventing mineralization. Calcif Tissue Int 2005; 77: 167-174.
  • 10 Alexander RT, Cordat E, Chambrey R. et al. Acidosis and Urinary Calcium Excretion: Insights from Genetic Disorders. J Am Soc Nephrol 2016; 27: 3511-3520.
  • 11 Alexy U, Remer T, Manz F. et al. Long-term protein intake and dietary potential renal acid load are associated with bone modeling and remodeling at the proximal radius in healthy children. Am J Clin Nutr 2005; 82: 1107-1114.
  • 12 Remer T, Manz F, Alexy U. et al. Long-term high urinary potential renal acid load and low nitrogen excretion predict reduced diaphyseal bone mass and bone size in children. J Clin Endocrinol Metab 2011; 96: 2861-2868.
  • 13 Esche J, Johner S, Shi L. et al. Urinary Citrate, an Index of Acid-Base Status, Predicts Bone Strength in Youths and Fracture Risk in Adult Females. J Clin Endocrinol Metab 2016; 101: 4914-4921.
  • 14 Bergqvist AG, Schall JI, Stallings VA, Zemel BS. Progressive bone mineral content loss in children with intractable epilepsy treated with the ketogenic diet. Am J Clin Nutr 2008; 88: 1678-1684.
  • 15 Simm PJ, Bicknell-Royle J, Lawrie J. et al. The effect of the ketogenic diet on the developing skeleton. Epilepsy Res 2017; 136: 62-66.
  • 16 Remer T, Krupp D, Shi L. Dietary protein’s and dietary acid load’s influence on bone health. Crit Rev Food Sci Nutr 2014; 54: 1140-1150.
  • 17 Faure AM, Fischer K, Dawson-Hughes B. et al. Gender-specific association between dietary acid load and total lean body mass and its dependency on protein intake in seniors. Osteoporos Int 2017; 28: 3451-3462.
  • 18 Macdonald HM, Black AJ, Aucott L. et al. Effect of potassium citrate supplementation or increased fruit and vegetable intake on bone metabolism in healthy postmenopausal women: a randomized controlled trial. Am J Clin Nutr 2008; 88: 465-474.
  • 19 Frassetto LA, Hardcastle AC, Sebastian A. et al. No evidence that the skeletal non-response to potassium alkali supplements in healthy postmenopausal women depends on blood pressure or sodium chloride intake. Eur J Clin Nutr 2012; 66: 1315-1322.
  • 20 Jehle S, Hulter HN, Krapf R. Effect of potassium citrate on bone ensity,microarchitecture, and fracture risk in healthy older adults without osteoporosis: a randomized controlled trial. J Clin Endocrinol Metab 2013; 98: 207-217.
  • 21 Green J, Kleeman CR. Role of bone in regulation of systemic acid-base balance. Kidney Int 1991; 39: 9-26.
  • 22 Maurer M, Riesen W, Muser J. et al. Neutralization of Western diet inhibits bone resorption independently of K intake and reduces cortisol secretion in humans. Am J Physiol Renal Physiol 2003; 284: F32-F40.
  • 23 Buehlmeier J, Remer T, Frings-Meuthen P. et al. Glucocorticoid activity and metabolism with NaCl-induced low-grade metabolic acidosis and oral alkalization: results of two randomized controlled trials. Endocrine 2016; 52: 139-147.
  • 24 Karim Z, Attmane-Elakeb A, Bichara M. Renal handling of NH4+ in relation to the control of acid-base balance by the kidney. Review. J Nephrol 2002; 15 (Suppl. 5): S128-S134.
  • 25 Shi L, Sánchez-Guijo A, Hartmann MF. et al. Higher glucocorticoid secretion in the physiological range is associated with lower bone strength at the proximal radius in healthy children: importance of protein intake adjustment. J Bone Miner Res 2015; 30: 240-248.