Thromb Haemost 1983; 49(02): 109-115
DOI: 10.1055/s-0038-1657333
Original Article
Schattauer GmbH Stuttgart

Covalent Complexes Between Low Molecular Weight Heparin Fragments and Antithrombin III – Inhibition Kinetics and Turnover Parameters

M Hoylaerts
1   The Center for Thrombosis and Vascular Research, Department of Medical Research, University of Leuven, Belgium
,
E Holmer
2   The Kabi Vitrum AB, Research Department, Stockholm, Sweden
,
M de Mol
1   The Center for Thrombosis and Vascular Research, Department of Medical Research, University of Leuven, Belgium
,
D Collen
1   The Center for Thrombosis and Vascular Research, Department of Medical Research, University of Leuven, Belgium
› Author Affiliations
Further Information

Publication History

Received 28 October 1982

Accepted 28 January 1983

Publication Date:
18 July 2018 (online)

Summary

Two high affinity heparin fragments (A/r 4,300 and M, 3,200) were covalently coupled to antithrombin III (J. Biol. Chem. 1982; 257: 3401-3408) with an apparent 1:1 stoichiometry and a 30-35% yield.

The purified covalent complexes inhibited factor Xa with second order rate constants very similar to those obtained for antithrombin III saturated with these heparin fragments and to that obtained for the covalent complex between antithrombin III and native high affinity heparin.

The disappearance rates from plasma in rabbits of both low molecular weight heparin fragments and their complexes could adequately be represented by two-compartment mammillary models. The plasma half-life (t'/j) of both low Afr-heparin fragments was approximately 2.4 hr. Covalent coupling of the fragments to antithrombin III increased this half-life about 3.5 fold (t1/2 ≃ 7.7 hr), approaching that of free antithrombin III (t1/2 ≃ 11 ± 0.4 hr) and resulting in a 30fold longer life time of factor Xa inhibitory activity in plasma as compared to that of free intact heparin (t1/2 ≃ 0.25 ± 0.04 hr).

 
  • References

  • 1 Ehrlich J, Stivala SS. Chemistry and pharmacology of heparin. J Pharm Sci 1973; 62: 527-544
  • 2 Lam LH, Silbert JE, Rosenberg RD. The separation of active and inactive forms of heparin. Biochem Biophys Res Commun 1976; 69: 570-577
  • 3 Höök M, Björk I, Hopwood I, Lindahl U. Separation of high-activity and low-activity heparin-species by affinity chromatography on immobilized antithrombin. FEBS Lett 1976; 66: 90-93
  • 4 Andersson L-O, Barrowcliffe TW, Holmer E, Johnson EA, Sims GE. Anticoagulant properties of heparin fractionated by affinity chromatography on matrix-bound antithrombin III and by gel filtration. Thromb Res 1976; 9: 575-583
  • 5 Laurent TC. Studies on fractionated heparin. Arch Biochem Biophys 1961; 92: 224-231
  • 6 Johnson EA, Mulloy B. The molecular-weight range of mucosalheparin preparations. Carbohydr Res 1976; 51: 119-127
  • 7 Piepkom MW, Schmer G, Lagunoff D. Isolation of high-activity heparin by DEAE-Sephadex and protamine-Sepharose chromatography. Thromb Res 1978; 13: 1077-1087
  • 8 Andersson L-O, Barrowcliffe TW, Holmer E, Johnson EA, Söderström G. Molecular weight dependency of the heparin potentiated inhibition of thrombin and activated factor X. Effect of heparin neutralization in plasma. Thromb Res 1979; 15: 531-541
  • 9 Thunberg L, Lindahl U, Tengblad N, Laurent TC, Jackson CM. On the molecular-weight-dependency of the anticoagulant activity of heparin. Biochem J 1979; 181: 241-243
  • 10 Holmer E. Anticoagulant properties of heparin and heparin fractions. In: “Clinical Usage of Heparin. Present and Future Trends”. Verstraete M, Machin SJ. (eds). Scand J Haematol. 1980. 25. suppl 36 25-39
  • 11 Thomas DP, Barrowcliffe TW, Johnson EA. The influence of tissue source, salt and molecular weight on heparin activity. In: “Clinical Usage of Heparin. Present and Future Trends”. Verstraete M, Machin SJ. (eds). Scand J Haematol. 1980. 25. suppl 36 840-849
  • 12 Linker A, Hovingh P. Isolation and characterization of oligosaccharides obtained from heparin by the action of heparinase. Biochemistry 1972; 11: 563-567
  • 13 Hopwood J, Höök M, Linker A, Lindahl U. Anticoagulant activity of heparin: isolation of antithrombin-binding sites. FEBS Lett 1976; 69: 51-54
  • 14 Cifonelli JA, King J. The distribution of 2-acetamide-2-deoxy-D-glucose residues in mammalian heparins. Carbohydr Res 1972; 21: 173-186
  • 15 Lindahl U, Bäckström G, Höök M, Thunberg L, Fransson L-A, Linker A. Structure of the antithrombin-binding site in heparin. Proc Natl Acad Sci USA 1979; 76: 3198-3202
  • 16 Thunberg L, Bäckström G, Grundberg H, Riesenfeld J, Lindahl U. The molecular size of the antithrombin-binding sequence in heparin. FEBS Lett 1980; 117: 203-206
  • 17 Holmer E, Lindahl U, Backstrom G, Thunberg L, Sandberg H, Söderström G, Andersson L-O. Anticoagulant activities and effects on platelets of a heparin fragment with high affinity for antithrombin. Thromb Res 1980; 18: 573-578
  • 18 Holmer E, Mattsson C, Nilsson S. Anticoagulant and antithrombotic effects of heparin and low molecular weight heparin fragments in rabbits. Thromb Res 1982; 25: 475-485
  • 19 Holmer E, Mattsson C, Nilsson S, Söderström G, Svahn C-M. Antithrombotic properties of a low molecular weight heparin. Thromb Haemostas 1981; 46: 117 (Abstr.).
  • 20 Ockelford PA, Carter CJ, Hirsh J. The lack of relationship between anti-Xa activity and antithrombotic activity of low molecular weight heparin. Thromb Haemostas 1981; 46: 116 (Abstr.).
  • 21 Thomas DP, Merton RE, Barrowcliffe TW, Thunberg L, Lindahl U. Effects of heparin oligosaccharides with high affinity for antithrombin III in experimental venous thrombosis. Thromb Haemostas 1982; 47: 244-248
  • 22 Ceustermans R, Hoylaerts M, De MolM, Collen D. Preparation, characterization and turnover properties of heparin-antithrombin III complexes stabilized by covalent bonds. J Biol Chem 1982; 257: 3401-3408
  • 23 Miller-Andersson M, Borg H, Andersson L-O. Purification of antithrombin III by affinity chromatography. Thromb Res 1974; 5: 439-452
  • 24 Collen D, Schetz J, De CockF, Holmer E, Verstraete M. Metabolism of antithrombin III (heparin cofactor) in man: effects of venous thrombosis and of heparin administration. Eur J Clin Invest 1977; 7: 27-35
  • 25 Jacobsson J, Höök M, Pettersson I, Lindahl U, Larm O, Wirén E, Von FiguraK. Identification of N-sulphated disaccharide units in heparinlike polysaccharides. Biochem J 1979; 179: 77-87
  • 26 Wirth WV. U. S. Patent. 1954; 2 681 358
  • 27 Inoue Y, Nagasawa K. A new method for the determination of N-sulfate in heparin and in its analogs. Anal Biochem 1976; 71: 46-52
  • 28 Inoue Y, Nagasawa K. Selective N-desulfation of heparin with dimethylsulfoxide containing water or methanol. Carbohydr Res 1976; 46: 87-95
  • 29 Teien AN, Lie M, Abildgaard U. Assay of heparin in plasma using a chromogenic substrate for activated factor X. Thromb Res 1976; 8: 413-416
  • 30 Teien AN, Lie M. Evaluation of an amidolytic heparin assay method: increased sensitivity by adding purified antithrombin III. Thromb Res 1977; 10: 399-410
  • 31 Laurell CB. Quantitative estimation of proteins by electrophoresis in agarose gel containing antibodies. Anal Biochem 1966; 15: 45-52
  • 32 Danishefsky I, Siskovic E. Heparin derivatives prepared by modification of the uronic acid carboxyl groups. Thromb Res 1972; 1: 173-182
  • 33 Danishefsky I, Siskovic E. Conversion of carboxyl groups of mucopolysaccharides into amides of amino acid esters. Carbohydr Res 1971; 16: 199-205
  • 34 Yosizawa Z, Kotoku T, Yamauchi F, Matsuno M. Stability of the biological activities of heparins to mild acid treatment. Biochim Biophys Acta 1967; 141: 358-365
  • 35 Edman P, Henschen A. Sequence determination. In: “Protein Sequence Determination”. Needleman SB. (ed). pp 232-279 Springer Verlag; Berlin – Heidelberg – New York: 1975
  • 36 Anker HS. A solubilizable acrylamide gel for electrophoresis. FEBS Lett. 1970; 7: 293
  • 37 Collen D, Tytgat G, Claeys H, Verstraete M, Wallén P. Metabolism of plasminogen in healthy subjects: effect of tranexamic acid. J Clin Invest 1972; 51: 1310-1318
  • 38 Clarke MGH, Freeman T. Quantitative immunoelectrophoresis of human serum proteins. Clin Sci 1968; 35: 403-413
  • 39 Holmer E, Kurachi K, Söderström G. The molecular-weight dependence of the rate-enhancing effect of heparin on the inhibition of thrombin, factor Xa, factor IXa, factor XIa, factor Xlla and kallikrein by antithrombin. Biochem J 1981; 193: 395-400
  • 40 Hirsh J. Treatment of venous thrombosis with heparin. In: “Heparin, Chemistry and Clinical Usage”. Kakkar VV, Thomas DP. (eds). pp 175-188 Academic Press; London: 1981
  • 41 Lijnen HR, Hoylaerts M, Collen D. Heparin binding properties of human histidine-rich glycoprotein. J Biol Chem. 1983. in press.