Thromb Haemost 2018; 118(07): 1167-1175
DOI: 10.1055/s-0038-1660479
Review Article
Georg Thieme Verlag KG Stuttgart · New York

A Disintegrin and Metalloproteases (ADAMs) in Cardiovascular, Metabolic and Inflammatory Diseases: Aspects for Theranostic Approaches

Emiel P. C. van der Vorst
1   Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
2   Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
,
Christian Weber
1   Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
2   Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
3   DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
,
Marjo M. P. C. Donners
1   Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
› Author Affiliations
Funding This work was supported by the Alexander von Humboldt Foundation to E.P.C.v.d.V., by the Deutsche Forschungsgemeinschaft (SFB 1123-A1), the German Centre for Cardiovascular Research (MHA VD 1.2), the European Research Council (ERC AdG °249929), the German Federal Ministry of Education and Research (grant number 01KU1213A), the Leducq Transatlantic Network CVGene(Fx) to C.W. and by the Netherlands Heart Foundation (Dr. E. Dekker grant 2012T079) to M.M.P.C.D.
Further Information

Publication History

09 February 2018

02 May 2018

Publication Date:
06 June 2018 (online)

Abstract

A disintegrin and metalloproteases (ADAMs) are membrane-bound enzymes responsible for the shedding or cleavage of various cell surface molecules, such as adhesion molecules, cytokines/chemokines and growth factors. This shedding can result in the release of soluble proteins that can exert agonistic or antagonistic functions. Additionally, ADAM-mediated cleavage can render these membrane proteins inactive. This review will describe the role and association of ADAMs in various pathologies with a main focus on ADAM10 and ADAM17 in atherosclerosis, including a brief overview of atherosclerosis-related ADAM substrates. Furthermore, ADAMs involvement in other metabolic and inflammatory diseases like diabetes, sepsis, Alzheimer's disease and rheumatoid arthritis will be highlighted. Subsequently, we will briefly discuss an interesting emerging field of research, i.e. the potential implications of ADAM expression in extracellular vesicles. Finally, several ADAM-based therapeutic and diagnostic (theranostic) opportunities will be discussed, while focusing on key questions about the required specificity and selectivity.

Note: The review process for this paper was fully handled by Gregory Y. H. Lip, Editor-in-Chief.


 
  • References

  • 1 Reiss K, Saftig P. The “a disintegrin and metalloprotease” (ADAM) family of sheddases: physiological and cellular functions. Semin Cell Dev Biol 2009; 20 (02) 126-137
  • 2 Edwards DR, Handsley MM, Pennington CJ. The ADAM metalloproteinases. Mol Aspects Med 2008; 29 (05) 258-289
  • 3 Bridges LC, Bowditch RD. ADAM-integrin interactions: potential integrin regulated ectodomain shedding activity. Curr Pharm Des 2005; 11 (07) 837-847
  • 4 Dreymueller D, Pruessmeyer J, Groth E, Ludwig A. The role of ADAM-mediated shedding in vascular biology. Eur J Cell Biol 2012; 91 (6-7): 472-485
  • 5 van der Vorst EP, Keijbeck AA, de Winther MP, Donners MM. A disintegrin and metalloproteases: molecular scissors in angiogenesis, inflammation and atherosclerosis. Atherosclerosis 2012; 224 (02) 302-308
  • 6 Zhang P, Shen M, Fernandez-Patron C, Kassiri Z. ADAMs family and relatives in cardiovascular physiology and pathology. J Mol Cell Cardiol 2016; 93: 186-199
  • 7 Zunke F, Rose-John S. The shedding protease ADAM17: physiology and pathophysiology. Biochim Biophys Acta 2017; 1864 (11 Pt B): 2059-2070
  • 8 Black RA, Rauch CT, Kozlosky CJ. , et al. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 1997; 385 (6618): 729-733
  • 9 Dreymueller D, Ludwig A. Considerations on inhibition approaches for proinflammatory functions of ADAM proteases. Platelets 2017; 28 (04) 354-361
  • 10 Grötzinger J, Lorenzen I, Düsterhöft S. Molecular insights into the multilayered regulation of ADAM17: the role of the extracellular region. Biochim Biophys Acta 2017; 1864 (11 Pt B): 2088-2095
  • 11 Duffy MJ, McKiernan E, O'Donovan N, McGowan PM. The role of ADAMs in disease pathophysiology. Clin Chim Acta 2009; 403 (1-2): 31-36
  • 12 Reiss K, Ludwig A, Saftig P. Breaking up the tie: disintegrin-like metalloproteinases as regulators of cell migration in inflammation and invasion. Pharmacol Ther 2006; 111 (03) 985-1006
  • 13 Sommer A, Kordowski F, Büch J. , et al. Phosphatidylserine exposure is required for ADAM17 sheddase function. Nat Commun 2016; 7: 11523
  • 14 Varshney P, Yadav V, Saini N. Lipid rafts in immune signalling: current progress and future perspective. Immunology 2016; 149 (01) 13-24
  • 15 Tellier E, Canault M, Rebsomen L. , et al. The shedding activity of ADAM17 is sequestered in lipid rafts. Exp Cell Res 2006; 312 (20) 3969-3980
  • 16 Ebsen H, Lettau M, Kabelitz D, Janssen O. Subcellular localization and activation of ADAM proteases in the context of FasL shedding in T lymphocytes. Mol Immunol 2015; 65 (02) 416-428
  • 17 Xu D, Sharma C, Hemler ME. Tetraspanin12 regulates ADAM10-dependent cleavage of amyloid precursor protein. FASEB J 2009; 23 (11) 3674-3681
  • 18 Arduise C, Abache T, Li L. , et al. Tetraspanins regulate ADAM10-mediated cleavage of TNF-alpha and epidermal growth factor. J Immunol 2008; 181 (10) 7002-7013
  • 19 Haining EJ, Yang J, Bailey RL. , et al. The TspanC8 subgroup of tetraspanins interacts with A disintegrin and metalloprotease 10 (ADAM10) and regulates its maturation and cell surface expression. J Biol Chem 2012; 287 (47) 39753-39765
  • 20 Noy PJ, Yang J, Reyat JS. , et al. TspanC8 tetraspanins and a disintegrin and metalloprotease 10 (ADAM10) interact via their extracellular regions: evidence for distinct binding mechanisms for different TspanC8 proteins. J Biol Chem 2016; 291 (07) 3145-3157
  • 21 Maney SK, McIlwain DR, Polz R. , et al. Deletions in the cytoplasmic domain of iRhom1 and iRhom2 promote shedding of the TNF receptor by the protease ADAM17. Sci Signal 2015; 8 (401) ra109
  • 22 Adrain C, Zettl M, Christova Y, Taylor N, Freeman M. Tumor necrosis factor signaling requires iRhom2 to promote trafficking and activation of TACE. Science 2012; 335 (6065): 225-228
  • 23 McIlwain DR, Lang PA, Maretzky T. , et al. iRhom2 regulation of TACE controls TNF-mediated protection against Listeria and responses to LPS. Science 2012; 335 (6065): 229-232
  • 24 Donners MM, Wolfs IM, Olieslagers S. , et al. A disintegrin and metalloprotease 10 is a novel mediator of vascular endothelial growth factor-induced endothelial cell function in angiogenesis and is associated with atherosclerosis. Arterioscler Thromb Vasc Biol 2010; 30 (11) 2188-2195
  • 25 Koenen RR, Pruessmeyer J, Soehnlein O. , et al. Regulated release and functional modulation of junctional adhesion molecule A by disintegrin metalloproteinases. Blood 2009; 113 (19) 4799-4809
  • 26 Schulz B, Pruessmeyer J, Maretzky T. , et al. ADAM10 regulates endothelial permeability and T-Cell transmigration by proteolysis of vascular endothelial cadherin. Circ Res 2008; 102 (10) 1192-1201
  • 27 Matthews AL, Noy PJ, Reyat JS, Tomlinson MG. Regulation of A disintegrin and metalloproteinase (ADAM) family sheddases ADAM10 and ADAM17: the emerging role of tetraspanins and rhomboids. Platelets 2017; 28 (04) 333-341
  • 28 Hundhausen C, Schulte A, Schulz B. , et al. Regulated shedding of transmembrane chemokines by the disintegrin and metalloproteinase 10 facilitates detachment of adherent leukocytes. J Immunol 2007; 178 (12) 8064-8072
  • 29 Ludwig A, Weber C. Transmembrane chemokines: versatile ‘special agents’ in vascular inflammation. Thromb Haemost 2007; 97 (05) 694-703
  • 30 Garton KJ, Gough PJ, Philalay J. , et al. Stimulated shedding of vascular cell adhesion molecule 1 (VCAM-1) is mediated by tumor necrosis factor-alpha-converting enzyme (ADAM 17). J Biol Chem 2003; 278 (39) 37459-37464
  • 31 Tsakadze NL, Sithu SD, Sen U, English WR, Murphy G, D'Souza SE. Tumor necrosis factor-alpha-converting enzyme (TACE/ADAM-17) mediates the ectodomain cleavage of intercellular adhesion molecule-1 (ICAM-1). J Biol Chem 2006; 281 (06) 3157-3164
  • 32 Pasqualon T, Pruessmeyer J, Weidenfeld S. , et al. A transmembrane C-terminal fragment of syndecan-1 is generated by the metalloproteinase ADAM17 and promotes lung epithelial tumor cell migration and lung metastasis formation. Cell Mol Life Sci 2015; 72 (19) 3783-3801
  • 33 Pruessmeyer J, Martin C, Hess FM. , et al. A disintegrin and metalloproteinase 17 (ADAM17) mediates inflammation-induced shedding of syndecan-1 and -4 by lung epithelial cells. J Biol Chem 2010; 285 (01) 555-564
  • 34 Demerath E, Towne B, Blangero J, Siervogel RM. The relationship of soluble ICAM-1, VCAM-1, P-selectin and E-selectin to cardiovascular disease risk factors in healthy men and women. Ann Hum Biol 2001; 28 (06) 664-678
  • 35 Lazo M, Halushka MK, Shen L. , et al. Soluble receptor for advanced glycation end products and the risk for incident heart failure: the Atherosclerosis Risk in Communities Study. Am Heart J 2015; 170 (05) 961-967
  • 36 Lobbes MB, Lutgens E, Heeneman S. , et al. Is there more than C-reactive protein and fibrinogen? The prognostic value of soluble CD40 ligand, interleukin-6 and oxidized low-density lipoprotein with respect to coronary and cerebral vascular disease. Atherosclerosis 2006; 187 (01) 18-25
  • 37 Rizza S, Copetti M, Cardellini M. , et al. A score including ADAM17 substrates correlates to recurring cardiovascular event in subjects with atherosclerosis. Atherosclerosis 2015; 239 (02) 459-464
  • 38 Li Y, Liao F, Yin XJ. , et al. An association study on ADAM10 promoter polymorphisms and atherosclerotic cerebral infarction in a Chinese population. CNS Neurosci Ther 2013; 19 (10) 785-794
  • 39 van der Vorst EP, Jeurissen M, Wolfs IM. , et al. Myeloid A disintegrin and metalloproteinase domain 10 deficiency modulates atherosclerotic plaque composition by shifting the balance from inflammation toward fibrosis. Am J Pathol 2015; 185 (04) 1145-1155
  • 40 Holdt LM, Thiery J, Breslow JL, Teupser D. Increased ADAM17 mRNA expression and activity is associated with atherosclerosis resistance in LDL-receptor deficient mice. Arterioscler Thromb Vasc Biol 2008; 28 (06) 1097-1103
  • 41 Zheng DY, Zhao J, Yang JM, Wang M, Zhang XT. Enhanced ADAM17 expression is associated with cardiac remodeling in rats with acute myocardial infarction. Life Sci 2016; 151: 61-69
  • 42 Fan D, Takawale A, Shen M. , et al. Cardiomyocyte a disintegrin and metalloproteinase 17 (ADAM17) is essential in post-myocardial infarction repair by regulating angiogenesis. Circ Heart Fail 2015; 8 (05) 970-979
  • 43 Chute M, Jana S, Kassiri Z. Disintegrin and metalloproteinases (ADAMs and ADAM-TSs), the emerging family of proteases in heart physiology and pathology. Curr Opin Physiol 2018; 1: 34-45
  • 44 Canault M, Peiretti F, Kopp F. , et al. The TNF alpha converting enzyme (TACE/ADAM17) is expressed in the atherosclerotic lesions of apolipoprotein E-deficient mice: possible contribution to elevated plasma levels of soluble TNF alpha receptors. Atherosclerosis 2006; 187 (01) 82-91
  • 45 Zhao X, Kong J, Zhao Y. , et al. Gene silencing of TACE enhances plaque stability and improves vascular remodeling in a rabbit model of atherosclerosis. Sci Rep 2015; 5: 17939
  • 46 Chalaris A, Adam N, Sina C. , et al. Critical role of the disintegrin metalloprotease ADAM17 for intestinal inflammation and regeneration in mice. J Exp Med 2010; 207 (08) 1617-1624
  • 47 Nicolaou A, Zhao Z, Northoff BH. , et al. Adam17 deficiency promotes atherosclerosis by enhanced TNFR2 signaling in mice. Arterioscler Thromb Vasc Biol 2017; 37 (02) 247-257
  • 48 Nicolaou A, Northoff BH, Zhao Z. , et al. The ADAM17 metalloproteinase maintains arterial elasticity. Thromb Haemost 2018; 118 (01) 210-213
  • 49 van der Vorst EP, Zhao Z, Rami M. , et al. Contrasting effects of myeloid and endothelial ADAM17 on atherosclerosis development. Thromb Haemost 2017; 117 (03) 644-646
  • 50 Oksala N, Levula M, Airla N. , et al. ADAM-9, ADAM-15, and ADAM-17 are upregulated in macrophages in advanced human atherosclerotic plaques in aorta and carotid and femoral arteries--Tampere vascular study. Ann Med 2009; 41 (04) 279-290
  • 51 Bültmann A, Li Z, Wagner S. , et al. Loss of protease activity of ADAM15 abolishes protective effects on plaque progression in atherosclerosis. Int J Cardiol 2011; 152 (03) 382-385
  • 52 Sun C, Wu MH, Guo M, Day ML, Lee ES, Yuan SY. ADAM15 regulates endothelial permeability and neutrophil migration via Src/ERK1/2 signalling. Cardiovasc Res 2010; 87 (02) 348-355
  • 53 Sun C, Wu MH, Lee ES, Yuan SY. A disintegrin and metalloproteinase 15 contributes to atherosclerosis by mediating endothelial barrier dysfunction via Src family kinase activity. Arterioscler Thromb Vasc Biol 2012; 32 (10) 2444-2451
  • 54 Holloway JW, Laxton RC, Rose-Zerilli MJ. , et al. ADAM33 expression in atherosclerotic lesions and relationship of ADAM33 gene variation with atherosclerosis. Atherosclerosis 2010; 211 (01) 224-230
  • 55 Levula M, Airla N, Oksala N. , et al. ADAM8 and its single nucleotide polymorphism 2662 T/G are associated with advanced atherosclerosis and fatal myocardial infarction: Tampere Vascular study. Ann Med 2009; 41 (07) 497-507
  • 56 Raitoharju E, Seppälä I, Levula M. , et al. Common variation in the ADAM8 gene affects serum sADAM8 concentrations and the risk of myocardial infarction in two independent cohorts. Atherosclerosis 2011; 218 (01) 127-133
  • 57 Theodorou K, van der Vorst EPC, Gijbels MJ. , et al. Whole body and hematopoietic ADAM8 deficiency does not influence advanced atherosclerotic lesion development, despite its association with human plaque progression. Sci Rep 2017; 7 (01) 11670
  • 58 Menghini R, Fiorentino L, Casagrande V, Lauro R, Federici M. The role of ADAM17 in metabolic inflammation. Atherosclerosis 2013; 228 (01) 12-17
  • 59 Kraakman MJ, Kammoun HL, Allen TL. , et al. Blocking IL-6 trans-signaling prevents high-fat diet-induced adipose tissue macrophage recruitment but does not improve insulin resistance. Cell Metab 2015; 21 (03) 403-416
  • 60 Schuett H, Oestreich R, Waetzig GH. , et al. Transsignaling of interleukin-6 crucially contributes to atherosclerosis in mice. Arterioscler Thromb Vasc Biol 2012; 32 (02) 281-290
  • 61 Lee AC, Lam JK, Shiu SW, Wong Y, Betteridge DJ, Tan KC. Serum level of soluble receptor for advanced glycation end products is associated with a disintegrin and metalloproteinase 10 in type 1 diabetes. PLoS One 2015; 10 (09) e0137330
  • 62 Horiuchi K, Kimura T, Miyamoto T. , et al. Cutting edge: TNF-alpha-converting enzyme (TACE/ADAM17) inactivation in mouse myeloid cells prevents lethality from endotoxin shock. J Immunol 2007; 179 (05) 2686-2689
  • 63 Pruessmeyer J, Hess FM, Alert H. , et al. Leukocytes require ADAM10 but not ADAM17 for their migration and inflammatory recruitment into the alveolar space. Blood 2014; 123 (26) 4077-4088
  • 64 Cui L, Gao Y, Xie Y. , et al. An ADAM10 promoter polymorphism is a functional variant in severe sepsis patients and confers susceptibility to the development of sepsis. Crit Care 2015; 19: 73
  • 65 Patel IR, Attur MG, Patel RN. , et al. TNF-alpha convertase enzyme from human arthritis-affected cartilage: isolation of cDNA by differential display, expression of the active enzyme, and regulation of TNF-alpha. J Immunol 1998; 160 (09) 4570-4579
  • 66 Moss ML, Sklair-Tavron L, Nudelman R. Drug insight: tumor necrosis factor-converting enzyme as a pharmaceutical target for rheumatoid arthritis. Nat Clin Pract Rheumatol 2008; 4 (06) 300-309
  • 67 Isozaki T, Rabquer BJ, Ruth JH, Haines III GK, Koch AE. ADAM-10 is overexpressed in rheumatoid arthritis synovial tissue and mediates angiogenesis. Arthritis Rheum 2013; 65 (01) 98-108
  • 68 Akinyemi RO, Mukaetova-Ladinska EB, Attems J, Ihara M, Kalaria RN. Vascular risk factors and neurodegeneration in ageing related dementias: Alzheimer's disease and vascular dementia. Curr Alzheimer Res 2013; 10 (06) 642-653
  • 69 Bucerius J, Barthel H, Tiepolt S. , et al. Feasibility of in vivo 18F-florbetaben PET/MR imaging of human carotid amyloid-β. Eur J Nucl Med Mol Imaging 2017; 44 (07) 1119-1128
  • 70 Jans DM, Martinet W, Van De Parre TJ. , et al. Processing of amyloid precursor protein as a biochemical link between atherosclerosis and Alzheimer's disease. Cardiovasc Hematol Disord Drug Targets 2006; 6 (01) 21-34
  • 71 Lee PH, Bang OY, Hwang EM. , et al. Circulating beta amyloid protein is elevated in patients with acute ischemic stroke. J Neural Transm (Vienna) 2005; 112 (10) 1371-1379
  • 72 Stamatelopoulos K, Sibbing D, Rallidis LS. , et al. Amyloid-beta (1-40) and the risk of death from cardiovascular causes in patients with coronary heart disease. J Am Coll Cardiol 2015; 65 (09) 904-916
  • 73 Asai M, Hattori C, Szabó B. , et al. Putative function of ADAM9, ADAM10, and ADAM17 as APP alpha-secretase. Biochem Biophys Res Commun 2003; 301 (01) 231-235
  • 74 Pruessmeyer J, Ludwig A. The good, the bad and the ugly substrates for ADAM10 and ADAM17 in brain pathology, inflammation and cancer. Semin Cell Dev Biol 2009; 20 (02) 164-174
  • 75 Jorissen E, Prox J, Bernreuther C. , et al. The disintegrin/metalloproteinase ADAM10 is essential for the establishment of the brain cortex. J Neurosci 2010; 30 (14) 4833-4844
  • 76 Kuhn PH, Wang H, Dislich B. , et al. ADAM10 is the physiologically relevant, constitutive alpha-secretase of the amyloid precursor protein in primary neurons. EMBO J 2010; 29 (17) 3020-3032
  • 77 Lammich S, Kojro E, Postina R. , et al. Constitutive and regulated alpha-secretase cleavage of Alzheimer's amyloid precursor protein by a disintegrin metalloprotease. Proc Natl Acad Sci U S A 1999; 96 (07) 3922-3927
  • 78 Postina R, Schroeder A, Dewachter I. , et al. A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. J Clin Invest 2004; 113 (10) 1456-1464
  • 79 Endres K, Fahrenholz F, Lotz J. , et al. Increased CSF APPs-α levels in patients with Alzheimer disease treated with acitretin. Neurology 2014; 83 (21) 1930-1935
  • 80 Colciaghi F, Borroni B, Pastorino L. , et al. [alpha]-Secretase ADAM10 as well as [alpha]APPs is reduced in platelets and CSF of Alzheimer disease patients. Mol Med 2002; 8 (02) 67-74
  • 81 Harold D, Jehu L, Turic D. , et al. Interaction between the ADAM12 and SH3MD1 genes may confer susceptibility to late-onset Alzheimer's disease. Am J Med Genet B Neuropsychiatr Genet 2007; 144B (04) 448-452
  • 82 Mause SF, Weber C. Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ Res 2010; 107 (09) 1047-1057
  • 83 Théry C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 2009; 9 (08) 581-593
  • 84 Canault M, Leroyer AS, Peiretti F. , et al. Microparticles of human atherosclerotic plaques enhance the shedding of the tumor necrosis factor-alpha converting enzyme/ADAM17 substrates, tumor necrosis factor and tumor necrosis factor receptor-1. Am J Pathol 2007; 171 (05) 1713-1723
  • 85 Groth E, Pruessmeyer J, Babendreyer A. , et al. Stimulated release and functional activity of surface expressed metalloproteinase ADAM17 in exosomes. Biochim Biophys Acta 2016; 1863 (11) 2795-2808
  • 86 Stoeck A, Keller S, Riedle S. , et al. A role for exosomes in the constitutive and stimulus-induced ectodomain cleavage of L1 and CD44. Biochem J 2006; 393 (Pt 3): 609-618
  • 87 Lee HD, Koo BH, Kim YH, Jeon OH, Kim DS. Exosome release of ADAM15 and the functional implications of human macrophage-derived ADAM15 exosomes. FASEB J 2012; 26 (07) 3084-3095
  • 88 Tripathy D, Daniele G, Fiorentino TV. , et al. Pioglitazone improves glucose metabolism and modulates skeletal muscle TIMP-3-TACE dyad in type 2 diabetes mellitus: a randomised, double-blind, placebo-controlled, mechanistic study. Diabetologia 2013; 56 (10) 2153-2163
  • 89 Hoettecke N, Ludwig A, Foro S, Schmidt B. Improved synthesis of ADAM10 inhibitor GI254023X. Neurodegener Dis 2010; 7 (04) 232-238
  • 90 Moss ML, Rasmussen FH, Nudelman R, Dempsey PJ, Williams J. Fluorescent substrates useful as high-throughput screening tools for ADAM9. Comb Chem High Throughput Screen 2010; 13 (04) 358-365
  • 91 Ludwig A, Hundhausen C, Lambert MH. , et al. Metalloproteinase inhibitors for the disintegrin-like metalloproteinases ADAM10 and ADAM17 that differentially block constitutive and phorbol ester-inducible shedding of cell surface molecules. Comb Chem High Throughput Screen 2005; 8 (02) 161-171
  • 92 Tape CJ, Willems SH, Dombernowsky SL. , et al. Cross-domain inhibition of TACE ectodomain. Proc Natl Acad Sci U S A 2011; 108 (14) 5578-5583
  • 93 Knapinska AM, Dreymuller D, Ludwig A. , et al. SAR studies of exosite-binding substrate-selective inhibitors of a disintegrin and metalloprotease 17 (ADAM17) and application as selective in vitro probes. J Med Chem 2015; 58 (15) 5808-5824
  • 94 Maretzky T, McIlwain DR, Issuree PD. , et al. iRhom2 controls the substrate selectivity of stimulated ADAM17-dependent ectodomain shedding. Proc Natl Acad Sci U S A 2013; 110 (28) 11433-11438
  • 95 Jouannet S, Saint-Pol J, Fernandez L. , et al. TspanC8 tetraspanins differentially regulate the cleavage of ADAM10 substrates, Notch activation and ADAM10 membrane compartmentalization. Cell Mol Life Sci 2016; 73 (09) 1895-1915
  • 96 Duffy MJ, Mullooly M, O'Donovan N. , et al. The ADAMs family of proteases: new biomarkers and therapeutic targets for cancer?. Clin Proteomics 2011; 8 (01) 9
  • 97 Figarska SM, Vonk JM, van Diemen CC, Postma DS, Boezen HM. ADAM33 gene polymorphisms and mortality. A prospective cohort study. PLoS One 2013; 8 (07) e67768
  • 98 Fritzsche FR, Jung M, Tölle A. , et al. ADAM9 expression is a significant and independent prognostic marker of PSA relapse in prostate cancer. Eur Urol 2008; 54 (05) 1097-1106
  • 99 Fröhlich C, Albrechtsen R, Dyrskjøt L, Rudkjaer L, Ørntoft TF, Wewer UM. Molecular profiling of ADAM12 in human bladder cancer. Clin Cancer Res 2006; 12 (24) 7359-7368
  • 100 Roy R, Wewer UM, Zurakowski D, Pories SE, Moses MA. ADAM 12 cleaves extracellular matrix proteins and correlates with cancer status and stage. J Biol Chem 2004; 279 (49) 51323-51330
  • 101 McGowan PM, McKiernan E, Bolster F. , et al. ADAM-17 predicts adverse outcome in patients with breast cancer. Ann Oncol 2008; 19 (06) 1075-1081
  • 102 Kuroda H, Mochizuki S, Shimoda M. , et al. ADAM28 is a serological and histochemical marker for non-small-cell lung cancers. Int J Cancer 2010; 127 (08) 1844-1856