Semin Thromb Hemost 2018; 44(07): 691-706
DOI: 10.1055/s-0038-1661384
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Toxins Are an Excellent Source of Therapeutic Agents against Cardiovascular Diseases

Cho Yeow Koh
1   Department of Medicine, National University of Singapore, Singapore
2   Protein Science Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
,
Cassandra M. Modahl
2   Protein Science Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
,
Namrata Kulkarni
2   Protein Science Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
,
R. Manjunatha Kini
2   Protein Science Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
› Author Affiliations
Further Information

Publication History

Publication Date:
28 June 2018 (online)

Abstract

Venomous and hematophagous animals use their venom or saliva for survival, to obtain food, and for self-defense. Venom and saliva from these animals are cocktails of bioactive molecules primarily composed of proteins and peptides. These molecules are called toxins because they cause unwanted consequences on prey. They exhibit unique, diverse, and specific biological activities that perturb normal physiological processes of their prey and host. However, the potential of toxins as inspirations for the development of therapeutic agents or pharmacological tools has also long been recognized. In addition to their small size, the exquisite selectivity and structural stability of toxins make them attractive as starting molecule in the development of therapeutic and diagnostic agents. Drug discovery and development from venomous and hematophagous animals against cardiovascular diseases have been particularly successful. Some of the notable success include antihypertensive (captopril and enalapril) and antiplatelet agents (tirofiban and eptifibatide), as well as anticoagulants (lepirudin and bivalirudin). Highlighted in this review are many venom or saliva-derived cardiovascular-active proteins and peptides of therapeutic interest, including those that are currently in preclinical stages and those that have been approved by FDA and currently in the market. The authors attempt to summarize their structure, function, mechanism of action, and development with respect to cardiovascular diseases.

 
  • References

  • 1 Casewell NR, Wüster W, Vonk FJ, Harrison RA, Fry BG. Complex cocktails: the evolutionary novelty of venoms. Trends Ecol Evol 2013; 28 (04) 219-229
  • 2 Mackessy SP. The field of reptile toxinology: snakes, lizards and their venoms. In: Mackessy SP. , ed. Handbook of Venoms and Toxins of Reptiles. Boca Raton, FL: CRC Press/Taylor & Francis Group; 2010: 2-23
  • 3 Tu AT. Overview of snake venom chemistry. In: Singh BR, Tu AT. , eds. Natural toxins 2: Structure, mechanism of action, and detection. Boston, MA: Springer; 1996: 37-62
  • 4 Boldrini-França J, Cologna CT, Pucca MB. , et al. Minor snake venom proteins: structure, function and potential applications. Biochim Biophys Acta 2017; 1861 (04) 824-838
  • 5 Sunagar K, Moran Y. The rise and fall of an evolutionary innovation: contrasting strategies of venom evolution in ancient and young animals. PLoS Genet 2015; 11 (10) e1005596
  • 6 Kazimírová M, Štibrániová I. Tick salivary compounds: their role in modulation of host defences and pathogen transmission. Front Cell Infect Microbiol 2013; 3: 43
  • 7 Walker AA, Weirauch C, Fry BG, King GF. Venoms of Heteropteran insects: a treasure trove of diverse pharmacological toolkits. Toxins (Basel) 2016; 8 (02) 43
  • 8 Hovius JW, Levi M, Fikrig E. Salivating for knowledge: potential pharmacological agents in tick saliva. PLoS Med 2008; 5 (02) e43
  • 9 Koh CY, Kini RM. Anticoagulants from hematophagous animals. Expert Rev Hematol 2008; 1 (02) 135-139
  • 10 Mans BJ, Francischetti IMB. Sialomic perspectives on the evolution of blood-feeding behavior in arthropods: future therapeutics by natural design. In: Kini RM, Clemetson KJ, Markland FS, McLane MA, Morita T. , eds. Toxins and Hemostasis: From Bench to Bedside. Dordrecht, The Netherlands: Springer; 2011: 21-44
  • 11 Fry BG, Koludarov I, Jackson TNW. , et al. Seeing the woods for the trees: understanding venom evolution as a guide for biodiscovery. In: King GF. , ed. Venoms to Drugs: Venom As a Source for the Development of Human Therapeutics. Cambridge, UK: Royal Society of Chemistry; 2015: 1-36
  • 12 Monroe DM, Hoffman M. What does it take to make the perfect clot?. Arterioscler Thromb Vasc Biol 2006; 26 (01) 41-48
  • 13 Rivera J, Lozano ML, Navarro-Núñez L, Vicente V. Platelet receptors and signaling in the dynamics of thrombus formation. Haematologica 2009; 94 (05) 700-711
  • 14 Kini RM. Platelet aggregation and exogenous factors from animal sources. Curr Drug Targets Cardiovasc Haematol Disord 2004; 4 (04) 301-325
  • 15 Francischetti IM. Platelet aggregation inhibitors from hematophagous animals. Toxicon 2010; 56 (07) 1130-1144
  • 16 Franchi F, Angiolillo DJ. Novel antiplatelet agents in acute coronary syndrome. Nat Rev Cardiol 2015; 12 (01) 30-47
  • 17 Connolly TM, Jacobs JW, Condra C. An inhibitor of collagen-stimulated platelet activation from the salivary glands of the Haementeria officinalis leech. I. Identification, isolation, and characterization. J Biol Chem 1992; 267 (10) 6893-6898
  • 18 Keller PM, Schultz LD, Condra C, Karczewski J, Connolly TM. An inhibitor of collagen-stimulated platelet activation from the salivary glands of the Haementeria officinalis leech. II. Cloning of the cDNA and expression. J Biol Chem 1992; 267 (10) 6899-6904
  • 19 Harsfalvi J, Stassen JM, Hoylaerts MF. , et al. Calin from Hirudo medicinalis, an inhibitor of von Willebrand factor binding to collagen under static and flow conditions. Blood 1995; 85 (03) 705-711
  • 20 Calvo E, Tokumasu F, Marinotti O, Villeval JL, Ribeiro JM, Francischetti IM. Aegyptin, a novel mosquito salivary gland protein, specifically binds to collagen and prevents its interaction with platelet glycoprotein VI, integrin alpha2beta1, and von Willebrand factor. J Biol Chem 2007; 282 (37) 26928-26938
  • 21 Deckmyn H, Stassen JM, Vreys I, Van Houtte E, Sawyer RT, Vermylen J. Calin from Hirudo medicinalis, an inhibitor of platelet adhesion to collagen, prevents platelet-rich thrombosis in hamsters. Blood 1995; 85 (03) 712-719
  • 22 Calvo E, Tokumasu F, Mizurini DM. , et al. Aegyptin displays high-affinity for the von Willebrand factor binding site (RGQOGVMGF) in collagen and inhibits carotid thrombus formation in vivo. FEBS J 2010; 277 (02) 413-427
  • 23 Schaffer LW, Davidson JT, Siegl PK. , et al. Recombinant leech antiplatelet protein prevents collagen-mediated platelet aggregation but not collagen graft thrombosis in baboons. Arterioscler Thromb 1993; 13 (11) 1593-1601
  • 24 Clemetson KJ. Snaclecs (snake C-type lectins) that inhibit or activate platelets by binding to receptors. Toxicon 2010; 56 (07) 1236-1246
  • 25 Morita T. Structures and functions of snake venom CLPs (C-type lectin-like proteins) with anticoagulant-, procoagulant-, and platelet-modulating activities. Toxicon 2005; 45 (08) 1099-1114
  • 26 Brinkhous KM, Read MS, Reddick RL, Griggs TR. Pathophysiology of platelet-aggregating von Willebrand factor: applications of the venom coagglutinin vWF assay. Ann N Y Acad Sci 1981; 370: 191-204
  • 27 Fukuda K, Doggett T, Laurenzi IJ, Liddington RC, Diacovo TG. The snake venom protein botrocetin acts as a biological brace to promote dysfunctional platelet aggregation. Nat Struct Mol Biol 2005; 12 (02) 152-159
  • 28 Polgár J, Clemetson JM, Kehrel BE. , et al. Platelet activation and signal transduction by convulxin, a C-type lectin from Crotalus durissus terrificus (tropical rattlesnake) venom via the p62/GPVI collagen receptor. J Biol Chem 1997; 272 (21) 13576-13583
  • 29 Leduc M, Bon C. Cloning of subunits of convulxin, a collagen-like platelet-aggregating protein from Crotalus durissus terrificus venom. Biochem J 1998; 333 (Pt 2): 389-393
  • 30 Perchuc AM, Wilmer M. Diagnostic use of snake venom components in the coagulation laboratory. In: Kini RM, Clemetson KJ, Markland FS, McLane MA, Morita T. , eds. Toxins and Hemostasis: From Bench to Bedside. Dordrecht, The Netherlands: Springer; 2011: 747-766
  • 31 Taniuchi Y, Kawasaki T, Fujimura Y. , et al. Flavocetin-A and -B, two high molecular mass glycoprotein Ib binding proteins with high affinity purified from Trimeresurus flavoviridis venom, inhibit platelet aggregation at high shear stress. Biochim Biophys Acta 1995; 1244 (2-3): 331-338
  • 32 Wang R, Kini RM, Chung MC. Rhodocetin, a novel platelet aggregation inhibitor from the venom of Calloselasma rhodostoma (Malayan pit viper): synergistic and noncovalent interaction between its subunits. Biochemistry 1999; 38 (23) 7584-7593
  • 33 Marcinkiewicz C, Lobb RR, Marcinkiewicz MM. , et al. Isolation and characterization of EMS16, a C-lectin type protein from Echis multisquamatus venom, a potent and selective inhibitor of the alpha2beta1 integrin. Biochemistry 2000; 39 (32) 9859-9867
  • 34 Mans BJ, Gasper AR, Louw AI, Neitz AW. Purification and characterization of apyrase from the tick, Ornithodoros savignyi . Comp Biochem Physiol B Biochem Mol Biol 1998; 120 (03) 617-624
  • 35 Mans BJ, Gaspar AR, Louw AI, Neitz AW. Apyrase activity and platelet aggregation inhibitors in the tick Ornithodoros savignyi (Acari: Argasidae). Exp Appl Acarol 1998; 22 (06) 353-366
  • 36 Valenzuela JG, Charlab R, Galperin MY, Ribeiro JM. Purification, cloning, and expression of an apyrase from the bed bug Cimex lectularius. A new type of nucleotide-binding enzyme. J Biol Chem 1998; 273 (46) 30583-30590
  • 37 Champagne DE, Smartt CT, Ribeiro JM, James AA. The salivary gland-specific apyrase of the mosquito Aedes aegypti is a member of the 5′-nucleotidase family. Proc Natl Acad Sci U S A 1995; 92 (03) 694-698
  • 38 Flower DR. The lipocalin protein family: structure and function. Biochem J 1996; 318 (Pt 1): 1-14
  • 39 Francischetti IM, Andersen JF, Ribeiro JM. Biochemical and functional characterization of recombinant Rhodnius prolixus platelet aggregation inhibitor 1 as a novel lipocalin with high affinity for adenosine diphosphate and other adenine nucleotides. Biochemistry 2002; 41 (11) 3810-3818
  • 40 Mans BJ, Ribeiro JM. Function, mechanism and evolution of the moubatin-clade of soft tick lipocalins. Insect Biochem Mol Biol 2008; 38 (09) 841-852
  • 41 Andersen JF, Francischetti IM, Valenzuela JG, Schuck P, Ribeiro JM. Inhibition of hemostasis by a high affinity biogenic amine-binding protein from the saliva of a blood-feeding insect. J Biol Chem 2003; 278 (07) 4611-4617
  • 42 Mans BJ, Ribeiro JM, Andersen JF. Structure, function, and evolution of biogenic amine-binding proteins in soft ticks. J Biol Chem 2008; 283 (27) 18721-18733
  • 43 Mans BJ, Andersen JF, Schwan TG, Ribeiro JM. Characterization of anti-hemostatic factors in the argasid, Argas monolakensis: implications for the evolution of blood-feeding in the soft tick family. Insect Biochem Mol Biol 2008; 38 (01) 22-41
  • 44 Sangamnatdej S, Paesen GC, Slovak M, Nuttall PA. A high affinity serotonin- and histamine-binding lipocalin from tick saliva. Insect Mol Biol 2002; 11 (01) 79-86
  • 45 Kirby EP, Niewiarowski S, Stocker K, Kettner C, Shaw E, Brudzynski TM. Thrombocytin, a serine protease from Bothrops atrox venom. 1. Purification and characterization of the enzyme. Biochemistry 1979; 18 (16) 3564-3570
  • 46 Campbell ID, Humphries MJ. Integrin structure, activation, and interactions. Cold Spring Harb Perspect Biol 2011; 3 (03) a004994
  • 47 Longhurst CM, Jennings LK. Integrin-mediated signal transduction. Cell Mol Life Sci 1998; 54 (06) 514-526
  • 48 Calvete JJ, Marcinkiewicz C, Monleón D. , et al. Snake venom disintegrins: evolution of structure and function. Toxicon 2005; 45 (08) 1063-1074
  • 49 Calvete JJ. Brief history and molecular determinants of snake venom disintegrin evolution. In: Kini RM, Clemetson KJ, Markland FS, McLane MA, Morita T. , eds. Toxins and Hemostasis: From Bench to Bedside. Dordrecht, The Netherlands: Springer; 2011: 285-300
  • 50 Gan ZR, Gould RJ, Jacobs JW, Friedman PA, Polokoff MA. Echistatin. A potent platelet aggregation inhibitor from the venom of the viper, Echis carinatus . J Biol Chem 1988; 263 (36) 19827-19832
  • 51 Huang TF, Holt JC, Lukasiewicz H, Niewiarowski S. Trigramin. A low molecular weight peptide inhibiting fibrinogen interaction with platelet receptors expressed on glycoprotein IIb-IIIa complex. J Biol Chem 1987; 262 (33) 16157-16163
  • 52 Scarborough RM, Rose JW, Hsu MA. , et al. Barbourin. A GPIIb-IIIa-specific integrin antagonist from the venom of Sistrurus m. barbouri. J Biol Chem 1991; 266 (15) 9359-9362
  • 53 Shebuski RJ, Ramjit DR, Bencen GH, Polokoff MA. Characterization and platelet inhibitory activity of bitistatin, a potent arginine-glycine-aspartic acid-containing peptide from the venom of the viper Bitis arietans . J Biol Chem 1989; 264 (36) 21550-21556
  • 54 McLane MA, Sanchez EE, Wong A, Paquette-Straub C, Perez JC. Disintegrins. Curr Drug Targets Cardiovasc Haematol Disord 2004; 4 (04) 327-355
  • 55 Fujii Y, Okuda D, Fujimoto Z, Horii K, Morita T, Mizuno H. Crystal structure of trimestatin, a disintegrin containing a cell adhesion recognition motif RGD. J Mol Biol 2003; 332 (05) 1115-1122
  • 56 Saudek V, Atkinson RA, Pelton JT. Three-dimensional structure of echistatin, the smallest active RGD protein. Biochemistry 1991; 30 (30) 7369-7372
  • 57 Calvete JJ, Moreno-Murciano MP, Theakston RD, Kisiel DG, Marcinkiewicz C. Snake venom disintegrins: novel dimeric disintegrins and structural diversification by disulphide bond engineering. Biochem J 2003; 372 (Pt 3): 725-734
  • 58 Calvete JJ, Fox JW, Agelan A, Niewiarowski S, Marcinkiewicz C. The presence of the WGD motif in CC8 heterodimeric disintegrin increases its inhibitory effect on alphaII(b)beta3, alpha(v)beta3, and alpha5beta1 integrins. Biochemistry 2002; 41 (06) 2014-2021
  • 59 Coelho AL, De Freitas MS, Mariano-Oliveira A. , et al. RGD- and MLD-disintegrins, jarastatin and EC3, activate integrin-mediated signaling modulating the human neutrophils chemotaxis, apoptosis and IL-8 gene expression. Exp Cell Res 2004; 292 (02) 371-384
  • 60 Marcinkiewicz C, Weinreb PH, Calvete JJ. , et al. Obtustatin: a potent selective inhibitor of alpha1beta1 integrin in vitro and angiogenesis in vivo. Cancer Res 2003; 63 (09) 2020-2023
  • 61 McLane MA, Vijay-Kumar S, Marcinkiewicz C, Calvete JJ, Niewiarowski S. Importance of the structure of the RGD-containing loop in the disintegrins echistatin and eristostatin for recognition of alpha IIb beta 3 and alpha v beta 3 integrins. FEBS Lett 1996; 391 (1-2): 139-143
  • 62 Rahman S, Aitken A, Flynn G, Formstone C, Savidge GF. Modulation of RGD sequence motifs regulates disintegrin recognition of alphaIIb beta3 and alpha5 beta1 integrin complexes. Replacement of elegantin alanine-50 with proline, N-terminal to the RGD sequence, diminishes recognition of the alpha5 beta1 complex with restoration induced by Mn2+ cation. Biochem J 1998; 335 (Pt 2): 247-257
  • 63 Scarborough RM, Rose JW, Naughton MA. , et al. Characterization of the integrin specificities of disintegrins isolated from American pit viper venoms. J Biol Chem 1993; 268 (02) 1058-1065
  • 64 Wierzbicka-Patynowski I, Niewiarowski S, Marcinkiewicz C, Calvete JJ, Marcinkiewicz MM, McLane MA. Structural requirements of echistatin for the recognition of alpha(v)beta(3) and alpha(5)beta(1) integrins. J Biol Chem 1999; 274 (53) 37809-37814
  • 65 Huang TF, Hsu CC, Kuo YJ. Anti-thrombotic agents derived from snake venom proteins. Thromb J 2016; 14 (Suppl. 01) 18
  • 66 Bennett JS. Structure and function of the platelet integrin alphaIIbbeta3. J Clin Invest 2005; 115 (12) 3363-3369
  • 67 Zambelli VO, Pasqualoto KF, Picolo G, Chudzinski-Tavassi AM, Cury Y. Harnessing the knowledge of animal toxins to generate drugs. Pharmacol Res 2016; 112: 30-36
  • 68 Bledzka K, Smyth SS, Plow EF. Integrin αIIbβ3: from discovery to efficacious therapeutic target. Circ Res 2013; 112 (08) 1189-1200
  • 69 Millard M, Odde S, Neamati N. Integrin targeted therapeutics. Theranostics 2011; 1: 154-188
  • 70 Bassand JP. Current antithrombotic agents for acute coronary syndromes: focus on bleeding risk. Int J Cardiol 2013; 163 (01) 5-18
  • 71 Assumpcao TC, Ribeiro JM, Francischetti IM. Disintegrins from hematophagous sources. Toxins (Basel) 2012; 4 (05) 296-322
  • 72 Wang X, Coons LB, Taylor DB, Stevens Jr SE, Gartner TK. Variabilin, a novel RGD-containing antagonist of glycoprotein IIb-IIIa and platelet aggregation inhibitor from the hard tick Dermacentor variabilis . J Biol Chem 1996; 271 (30) 17785-17790
  • 73 Mans BJ, Louw AI, Neitz AW. Savignygrin, a platelet aggregation inhibitor from the soft tick Ornithodoros savignyi, presents the RGD integrin recognition motif on the Kunitz-BPTI fold. J Biol Chem 2002; 277 (24) 21371-21378
  • 74 Karczewski J, Endris R, Connolly TM. Disagregin is a fibrinogen receptor antagonist lacking the Arg-Gly-Asp sequence from the tick, Ornithodoros moubata . J Biol Chem 1994; 269 (09) 6702-6708
  • 75 Ma D, Wang Y, Yang H. , et al. Anti-thrombosis repertoire of blood-feeding horsefly salivary glands. Mol Cell Proteomics 2009; 8 (09) 2071-2079
  • 76 Ma D, Xu X, An S. , et al. A novel family of RGD-containing disintegrins (Tablysin-15) from the salivary gland of the horsefly Tabanus yao targets αIIbβ3 or αVβ3 and inhibits platelet aggregation and angiogenesis. Thromb Haemost 2011; 105 (06) 1032-1045
  • 77 Seymour JL, Henzel WJ, Nevins B, Stults JT, Lazarus RA. Decorsin. A potent glycoprotein IIb-IIIa antagonist and platelet aggregation inhibitor from the leech Macrobdella decora . J Biol Chem 1990; 265 (17) 10143-10147
  • 78 Mazur P, Henzel WJ, Seymour JL, Lazarus RA. Ornatins: potent glycoprotein IIb-IIIa antagonists and platelet aggregation inhibitors from the leech Placobdella ornata . Eur J Biochem 1991; 202 (03) 1073-1082
  • 79 Del Valle A, Jones BF, Harrison LM, Chadderdon RC, Cappello M. Isolation and molecular cloning of a secreted hookworm platelet inhibitor from adult Ancylostoma caninum . Mol Biochem Parasitol 2003; 129 (02) 167-177
  • 80 Krezel AM, Wagner G, Seymour-Ulmer J, Lazarus RA. Structure of the RGD protein decorsin: conserved motif and distinct function in leech proteins that affect blood clotting. Science 1994; 264 (5167): 1944-1947
  • 81 Xu X, Francischetti IM, Lai R, Ribeiro JM, Andersen JF. Structure of protein having inhibitory disintegrin and leukotriene scavenging functions contained in single domain. J Biol Chem 2012; 287 (14) 10967-10976
  • 82 Ma D, Francischetti IM, Ribeiro JM, Andersen JF. The structure of hookworm platelet inhibitor (HPI), a CAP superfamily member from Ancylostoma caninum . Acta Crystallogr F Struct Biol Commun 2015; 71 (Pt 6): 643-649
  • 83 Furie B, Furie BC. Thrombus formation in vivo. J Clin Invest 2005; 115 (12) 3355-3362
  • 84 Davie EW, Fujikawa K, Kisiel W. The coagulation cascade: initiation, maintenance, and regulation. Biochemistry 1991; 30 (43) 10363-10370
  • 85 Koh CY, Kini RM. Molecular diversity of anticoagulants from haematophagous animals. Thromb Haemost 2009; 102 (03) 437-453
  • 86 Kini RM. Toxins in thrombosis and haemostasis: potential beyond imagination. J Thromb Haemost 2011; 9 (Suppl. 01) 195-208
  • 87 Kini RM, Rao VS, Joseph JS. Procoagulant proteins from snake venoms. Haemostasis 2001; 31 (3-6): 218-224
  • 88 Kini RM, Koh CY. Metalloproteases affecting blood coagulation, fibrinolysis and platelet aggregation from snake venoms: definition and nomenclature of interaction sites. Toxins (Basel) 2016; 8 (10) E284
  • 89 Tans G, Rosing J. Snake venom activators of factor X: an overview. Haemostasis 2001; 31 (3-6): 225-233
  • 90 Manjunatha Kini R, Morita T, Rosing J. ; Registry of Exogenous Hemostatic Factors of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Classification and nomenclature of prothrombin activators isolated from snake venoms. Thromb Haemost 2001; 86 (02) 710-711
  • 91 Earl ST, Masci PP, de Jersey J, Lavin MF, Dixon J. Drug development from Australian elapid snake venoms and the Venomics pipeline of candidates for haemostasis: Textilinin-1 (Q8008), Haempatch™ (Q8009) and CoVase™ (V0801). Toxicon 2012; 59 (04) 456-463
  • 92 Koh CY, Kini RM. From snake venom toxins to therapeutics--cardiovascular examples. Toxicon 2012; 59 (04) 497-506
  • 93 Chmelar J, Calvo E, Pedra JH, Francischetti IM, Kotsyfakis M. Tick salivary secretion as a source of antihemostatics. J Proteomics 2012; 75 (13) 3842-3854
  • 94 Rebello Horta CC, Chatzaki M, Rezende BA. , et al. Cardiovascular-active venom toxins: an overview. Curr Med Chem 2016; 23 (06) 603-622
  • 95 Markwardt F. The development of hirudin as an antithrombotic drug. Thromb Res 1994; 74 (01) 1-23
  • 96 Grütter MG, Priestle JP, Rahuel J. , et al. Crystal structure of the thrombin-hirudin complex: a novel mode of serine protease inhibition. EMBO J 1990; 9 (08) 2361-2365
  • 97 Vitali J, Martin PD, Malkowski MG. , et al. The structure of a complex of bovine alpha-thrombin and recombinant hirudin at 2.8-A resolution. J Biol Chem 1992; 267 (25) 17670-17678
  • 98 Rydel TJ, Ravichandran KG, Tulinsky A. , et al. The structure of a complex of recombinant hirudin and human alpha-thrombin. Science 1990; 249 (4966): 277-280
  • 99 Greinacher A, Lubenow N. Recombinant hirudin in clinical practice: focus on lepirudin. Circulation 2001; 103 (10) 1479-1484
  • 100 Lee CJ, Ansell JE. Direct thrombin inhibitors. Br J Clin Pharmacol 2011; 72 (04) 581-592
  • 101 Warkentin TE, Greinacher A, Koster A. Bivalirudin. Thromb Haemost 2008; 99 (05) 830-839
  • 102 Shahzad A, Kemp I, Mars C. , et al; HEAT-PPCI trial investigators. Unfractionated heparin versus bivalirudin in primary percutaneous coronary intervention (HEAT-PPCI): an open-label, single centre, randomised controlled trial. Lancet 2014; 384 (9957): 1849-1858
  • 103 Koh CY, Kazimirova M, Trimnell A. , et al. Variegin, a novel fast and tight binding thrombin inhibitor from the tropical bont tick. J Biol Chem 2007; 282 (40) 29101-29113
  • 104 Koh CY, Kumar S, Kazimirova M. , et al. Crystal structure of thrombin in complex with S-variegin: insights of a novel mechanism of inhibition and design of tunable thrombin inhibitors. PLoS One 2011; 6 (10) e26367
  • 105 Koh CY, Kazimirova M, Nuttall PA, Kini RM. Noncompetitive inhibitor of thrombin. ChemBioChem 2009; 10 (13) 2155-2158
  • 106 Iyer JK, Koh CY, Kazimirova M. , et al. Avathrin: a novel thrombin inhibitor derived from a multicopy precursor in the salivary glands of the ixodid tick, Amblyomma variegatum. . FASEB J 2017; 31 (07) 2981-2995
  • 107 Iwanaga S, Okada M, Isawa H, Morita A, Yuda M, Chinzei Y. Identification and characterization of novel salivary thrombin inhibitors from the ixodidae tick, Haemaphysalis longicornis . Eur J Biochem 2003; 270 (09) 1926-1934
  • 108 Figueiredo AC, de Sanctis D, Pereira PJ. The tick-derived anticoagulant madanin is processed by thrombin and factor Xa. PLoS One 2013; 8 (08) e71866
  • 109 Nakajima C, Imamura S, Konnai S. , et al. A novel gene encoding a thrombin inhibitory protein in a cDNA library from Haemaphysalis longicornis salivary gland. J Vet Med Sci 2006; 68 (05) 447-452
  • 110 Brahma RK, Blanchet G, Kaur S, Manjunatha Kini R, Doley R. Expression and characterization of haemathrins, madanin-like thrombin inhibitors, isolated from the salivary gland of tick Haemaphysalis bispinosa (Acari: Ixodidae). Thromb Res 2017; 152: 20-29
  • 111 Valenzuela JG, Francischetti IM, Ribeiro JM. Purification, cloning, and synthesis of a novel salivary anti-thrombin from the mosquito Anopheles albimanus . Biochemistry 1999; 38 (34) 11209-11215
  • 112 Francischetti IM, Valenzuela JG, Ribeiro JM. Anophelin: kinetics and mechanism of thrombin inhibition. Biochemistry 1999; 38 (50) 16678-16685
  • 113 Figueiredo AC, de Sanctis D, Gutiérrez-Gallego R. , et al. Unique thrombin inhibition mechanism by anophelin, an anticoagulant from the malaria vector. Proc Natl Acad Sci U S A 2012; 109 (52) E3649-E3658
  • 114 Zhang D, Cupp MS, Cupp EW. Thrombostasin: purification, molecular cloning and expression of a novel anti-thrombin protein from horn fly saliva. Insect Biochem Mol Biol 2002; 32 (03) 321-330
  • 115 Cappello M, Bergum PW, Vlasuk GP, Furmidge BA, Pritchard DI, Aksoy S. Isolation and characterization of the tsetse thrombin inhibitor: a potent antithrombotic peptide from the saliva of Glossina morsitans morsitans . Am J Trop Med Hyg 1996; 54 (05) 475-480
  • 116 Li S, Kwon J, Aksoy S. Characterization of genes expressed in the salivary glands of the tsetse fly, Glossina morsitans morsitans . Insect Mol Biol 2001; 10 (01) 69-76
  • 117 Thompson RE, Liu X, Ripoll-Rozada J. , et al. Tyrosine sulfation modulates activity of tick-derived thrombin inhibitors. Nat Chem 2017; 9 (09) 909-917 ; advance online publication
  • 118 van de Locht A, Stubbs MT, Bode W. , et al. The ornithodorin-thrombin crystal structure, a key to the TAP enigma?. EMBO J 1996; 15 (22) 6011-6017
  • 119 Mans BJ, Louw AI, Neitz AW. Amino acid sequence and structure modeling of savignin, a thrombin inhibitor from the tick, Ornithodoros savignyi . Insect Biochem Mol Biol 2002; 32 (07) 821-828
  • 120 Nienaber J, Gaspar AR, Neitz AW. Savignin, a potent thrombin inhibitor isolated from the salivary glands of the tick Ornithodoros savignyi (Acari: Argasidae). Exp Parasitol 1999; 93 (02) 82-91
  • 121 Mende K, Petoukhova O, Koulitchkova V. , et al. Dipetalogastin, a potent thrombin inhibitor from the blood-sucking insect. Dipetalogaster maximus cDNA cloning, expression and characterization. Eur J Biochem 1999; 266 (02) 583-590
  • 122 Lovato DV, Nicolau de Campos IT, Amino R, Tanaka AS. The full-length cDNA of anticoagulant protein infestin revealed a novel releasable Kazal domain, a neutrophil elastase inhibitor lacking anticoagulant activity. Biochimie 2006; 88 (06) 673-681
  • 123 van de Locht A, Lamba D, Bauer M. , et al. Two heads are better than one: crystal structure of the insect derived double domain Kazal inhibitor rhodniin in complex with thrombin. EMBO J 1995; 14 (21) 5149-5157
  • 124 Zingali RB, Jandrot-Perrus M, Guillin MC, Bon C. Bothrojaracin, a new thrombin inhibitor isolated from Bothrops jararaca venom: characterization and mechanism of thrombin inhibition. Biochemistry 1993; 32 (40) 10794-10802
  • 125 Wilczynska M, Fa M, Ohlsson PI, Ny T. The inhibition mechanism of serpins. Evidence that the mobile reactive center loop is cleaved in the native protease-inhibitor complex. J Biol Chem 1995; 270 (50) 29652-29655
  • 126 Chmelar J, Oliveira CJ, Rezacova P. , et al. A tick salivary protein targets cathepsin G and chymase and inhibits host inflammation and platelet aggregation. Blood 2011; 117 (02) 736-744
  • 127 Ibelli AM, Kim TK, Hill CC. , et al. A blood meal-induced Ixodes scapularis tick saliva serpin inhibits trypsin and thrombin, and interferes with platelet aggregation and blood clotting. Int J Parasitol 2014; 44 (06) 369-379
  • 128 Xu T, Lew-Tabor A, Rodriguez-Valle M. Effective inhibition of thrombin by Rhipicephalus microplus serpin-15 (RmS-15) obtained in the yeast Pichia pastoris. Ticks Tick Borne Dis 2016; 7 (01) 180-187
  • 129 Fuentes-Prior P, Noeske-Jungblut C, Donner P, Schleuning WD, Huber R, Bode W. Structure of the thrombin complex with triabin, a lipocalin-like exosite-binding inhibitor derived from a triatomine bug. Proc Natl Acad Sci U S A 1997; 94 (22) 11845-11850
  • 130 Andersen JF. Structure and mechanism in salivary proteins from blood-feeding arthropods. Toxicon 2010; 56 (07) 1120-1129
  • 131 Müller F, Gailani D, Renné T. Factor XI and XII as antithrombotic targets. Curr Opin Hematol 2011; 18 (05) 349-355
  • 132 Decrem Y, Rath G, Blasioli V. , et al. Ir-CPI, a coagulation contact phase inhibitor from the tick Ixodes ricinus, inhibits thrombus formation without impairing hemostasis. J Exp Med 2009; 206 (11) 2381-2395
  • 133 Tanaka AS, Andreotti R, Gomes A, Torquato RJ, Sampaio MU, Sampaio CA. A double headed serine proteinase inhibitor--human plasma kallikrein and elastase inhibitor–from Boophilus microplus larvae. Immunopharmacology 1999; 45 (1-3): 171-177
  • 134 Sasaki SD, Azzolini SS, Hirata IY, Andreotti R, Tanaka AS. Boophilus microplus tick larvae, a rich source of Kunitz type serine proteinase inhibitors. Biochimie 2004; 86 (9-10): 643-649
  • 135 Sant'Anna Azzolini S, Sasaki SD, Torquato RJ, Andreotti R, Andreotti E, Tanaka AS. Rhipicephalus sanguineus trypsin inhibitors present in the tick larvae: isolation, characterization, and partial primary structure determination. Arch Biochem Biophys 2003; 417 (02) 176-182
  • 136 Kato N, Iwanaga S, Okayama T, Isawa H, Yuda M, Chinzei Y. Identification and characterization of the plasma kallikrein-kinin system inhibitor, haemaphysalin, from hard tick, Haemaphysalis longicornis . Thromb Haemost 2005; 93 (02) 359-367
  • 137 Isawa H, Yuda M, Orito Y, Chinzei Y. A mosquito salivary protein inhibits activation of the plasma contact system by binding to factor XII and high molecular weight kininogen. J Biol Chem 2002; 277 (31) 27651-27658
  • 138 Ishimaru Y, Gomez EA, Zhang F. , et al. Dimiconin, a novel coagulation inhibitor from the kissing bug, Triatoma dimidiata, a vector of Chagas disease. J Exp Biol 2012; 215 (Pt 20): 3597-3602
  • 139 Isawa H, Orito Y, Jingushi N. , et al. Identification and characterization of plasma kallikrein-kinin system inhibitors from salivary glands of the blood-sucking insect Triatoma infestans . FEBS J 2007; 274 (16) 4271-4286
  • 140 Kim TK, Tirloni L, Radulovic Z. , et al. Conserved Amblyomma americanum tick Serpin19, an inhibitor of blood clotting factors Xa and XIa, trypsin and plasmin, has anti-haemostatic functions. Int J Parasitol 2015; 45 (9-10): 613-627
  • 141 Gan W, Deng L, Yang C. , et al. An anticoagulant peptide from the human hookworm, Ancylostoma duodenale that inhibits coagulation factors Xa and XIa. FEBS Lett 2009; 583 (12) 1976-1980
  • 142 Li D, He Q, Kang T. , et al. Identification of an anticoagulant peptide that inhibits both fXIa and fVIIa/tissue factor from the blood-feeding nematode Ancylostoma caninum . Biochem Biophys Res Commun 2010; 392 (02) 155-159
  • 143 Ma D, Mizurini DM, Assumpção TC. , et al. Desmolaris, a novel factor XIa anticoagulant from the salivary gland of the vampire bat (Desmodus rotundus) inhibits inflammation and thrombosis in vivo. Blood 2013; 122 (25) 4094-4106
  • 144 Chen W, Carvalho LP, Chan MY, Kini RM, Kang TS. Fasxiator, a novel factor XIa inhibitor from snake venom, and its site-specific mutagenesis to improve potency and selectivity. J Thromb Haemost 2015; 13 (02) 248-261
  • 145 Atoda H, Morita T. A novel blood coagulation factor IX/factor X-binding protein with anticoagulant activity from the venom of Trimeresurus flavoviridis (Habu snake): isolation and characterization. J Biochem 1989; 106 (05) 808-813
  • 146 Atoda H, Ishikawa M, Yoshihara E, Sekiya F, Morita T. Blood coagulation factor IX-binding protein from the venom of Trimeresurus flavoviridis: purification and characterization. J Biochem 1995; 118 (05) 965-973
  • 147 Liu Y, Wang H, Yumul R. , et al. Transduction of liver metastases after intravenous injection of Ad5/35 or Ad35 vectors with and without factor X-binding protein pretreatment. Hum Gene Ther 2009; 20 (06) 621-629
  • 148 Francischetti IM, Valenzuela JG, Andersen JF, Mather TN, Ribeiro JM. Ixolaris, a novel recombinant tissue factor pathway inhibitor (TFPI) from the salivary gland of the tick, Ixodes scapularis: identification of factor X and factor Xa as scaffolds for the inhibition of factor VIIa/tissue factor complex. Blood 2002; 99 (10) 3602-3612
  • 149 Francischetti IM, Mather TN, Ribeiro JM. Penthalaris, a novel recombinant five-Kunitz tissue factor pathway inhibitor (TFPI) from the salivary gland of the tick vector of Lyme disease, Ixodes scapularis . Thromb Haemost 2004; 91 (05) 886-898
  • 150 Monteiro RQ, Rezaie AR, Bae JS, Calvo E, Andersen JF, Francischetti IM. Ixolaris binding to factor X reveals a precursor state of factor Xa heparin-binding exosite. Protein Sci 2008; 17 (01) 146-153
  • 151 Monteiro RQ, Rezaie AR, Ribeiro JM, Francischetti IM. Ixolaris: a factor Xa heparin-binding exosite inhibitor. Biochem J 2005; 387 (Pt 3): 871-877
  • 152 Crawley JT, Lane DA. The haemostatic role of tissue factor pathway inhibitor. Arterioscler Thromb Vasc Biol 2008; 28 (02) 233-242
  • 153 Murakami MT, Rios-Steiner J, Weaver SE, Tulinsky A, Geiger JH, Arni RK. Intermolecular interactions and characterization of the novel factor Xa exosite involved in macromolecular recognition and inhibition: crystal structure of human Gla-domainless factor Xa complexed with the anticoagulant protein NAPc2 from the hematophagous nematode Ancylostoma caninum . J Mol Biol 2007; 366 (02) 602-610
  • 154 Stassens P, Bergum PW, Gansemans Y. , et al. Anticoagulant repertoire of the hookworm Ancylostoma caninum . Proc Natl Acad Sci U S A 1996; 93 (05) 2149-2154
  • 155 Giugliano RP, Wiviott SD, Stone PH. , et al; ANTHEM-TIMI-32 Investigators. Recombinant nematode anticoagulant protein c2 in patients with non-ST-segment elevation acute coronary syndrome: the ANTHEM-TIMI-32 trial. J Am Coll Cardiol 2007; 49 (25) 2398-2407
  • 156 Banerjee Y, Mizuguchi J, Iwanaga S, Kini RM. Hemextin AB complex, a unique anticoagulant protein complex from Hemachatus haemachatus (African Ringhals cobra) venom that inhibits clot initiation and factor VIIa activity. J Biol Chem 2005; 280 (52) 42601-42611
  • 157 Girish VM, Kini RM. Exactin: a specific inhibitor of Factor X activation by extrinsic tenase complex from the venom of Hemachatus haemachatus . Sci Rep 2016; 6: 32036
  • 158 Barnwal B, Jobichen C, Girish VM, Foo CS, Sivaraman J, Kini RM. Ringhalexin from Hemachatus haemachatus: a novel inhibitor of extrinsic tenase complex. Sci Rep 2016; 6: 25935
  • 159 Waxman L, Smith DE, Arcuri KE, Vlasuk GP. Tick anticoagulant peptide (TAP) is a novel inhibitor of blood coagulation factor Xa. Science 1990; 248 (4955): 593-596
  • 160 Wei A, Alexander RS, Duke J, Ross H, Rosenfeld SA, Chang CH. Unexpected binding mode of tick anticoagulant peptide complexed to bovine factor Xa. J Mol Biol 1998; 283 (01) 147-154
  • 161 Gaspar AR, Joubert AM, Crause JC, Neitz AW. Isolation and characterization of an anticoagulant from the salivary glands of the tick, Ornithodoros savignyi (Acari: Argasidae). Exp Appl Acarol 1996; 20 (10) 583-598
  • 162 Cappello M, Vlasuk GP, Bergum PW, Huang S, Hotez PJ. Ancylostoma caninum anticoagulant peptide: a hookworm-derived inhibitor of human coagulation factor Xa. Proc Natl Acad Sci U S A 1995; 92 (13) 6152-6156
  • 163 Harrison LM, Nerlinger A, Bungiro RD, Córdova JL, Kuzmic P, Cappello M. Molecular characterization of Ancylostoma inhibitors of coagulation factor Xa. Hookworm anticoagulant activity in vitro predicts parasite bloodfeeding in vivo. J Biol Chem 2002; 277 (08) 6223-6229
  • 164 Rios-Steiner JL, Murakami MT, Tulinsky A, Arni RK. Active and exo-site inhibition of human factor Xa: structure of des-Gla factor Xa inhibited by NAP5, a potent nematode anticoagulant protein from Ancylostoma caninum . J Mol Biol 2007; 371 (03) 774-786
  • 165 Esmon CT. The protein C pathway. Chest 2003; 124 (3, Suppl): 26S-32S
  • 166 Stocker K, Fischer H, Meier J, Brogli M, Svendsen L. Characterization of the protein C activator Protac from the venom of the southern copperhead (Agkistrodon contortrix) snake. Toxicon 1987; 25 (03) 239-252
  • 167 Gempeler-Messina PM, Volz K, Bühler B, Müller C. Protein C activators from snake venoms and their diagnostic use. Haemostasis 2001; 31 (3-6): 266-272
  • 168 Castro HC, Zingali RB, Albuquerque MG, Pujol-Luz M, Rodrigues CR. Snake venom thrombin-like enzymes: from reptilase to now. Cell Mol Life Sci 2004; 61 (7-8): 843-856
  • 169 Kini RM. Serine proteases affecting blood coagulation and fibrinolysis from snake venoms. Pathophysiol Haemost Thromb 2005; 34 (4-5): 200-204
  • 170 Hutton RA, Warrell DA. Action of snake venom components on the haemostatic system. Blood Rev 1993; 7 (03) 176-189
  • 171 Nolan C, Hall LS, Barlow GH. Ancrod, the coagulating enzyme from Malayan pit viper (Agkistrodon rhodostoma) venom. Methods Enzymol 1976; 45: 205-213
  • 172 Stocker K, Barlow GH. The coagulant enzyme from Bothrops atrox venom (batroxobin). Methods Enzymol 1976; 45: 214-223
  • 173 Markland FS. Snake venoms and the hemostatic system. Toxicon 1998; 36 (12) 1749-1800
  • 174 Sherman DG, Atkinson RP, Chippendale T. , et al. Intravenous ancrod for treatment of acute ischemic stroke: the STAT study: a randomized controlled trial. Stroke Treatment with Ancrod Trial. JAMA 2000; 283 (18) 2395-2403
  • 175 Levy DE, del Zoppo GJ, Demaerschalk BM. , et al. Ancrod in acute ischemic stroke: results of 500 subjects beginning treatment within 6 hours of stroke onset in the ancrod stroke program. Stroke 2009; 40 (12) 3796-3803
  • 176 Novokhatny V. Structure and activity of plasmin and other direct thrombolytic agents. Thromb Res 2008; 122 (Suppl. 03) S3-S8
  • 177 Rijken DC, Lijnen HR. New insights into the molecular mechanisms of the fibrinolytic system. J Thromb Haemost 2009; 7 (01) 4-13
  • 178 Lu Q, Clemetson JM, Clemetson KJ. Snake venoms and hemostasis. J Thromb Haemost 2005; 3 (08) 1791-1799
  • 179 Bajwa SS, Kirakossian H, Reddy KN, Markland FS. Thrombin-like and fibrinolytic enzymes in the venoms from the Gaboon viper (Bitis gabonica), eastern cottonmouth moccasin (Agkistrodon p. piscivorus) and southern copperhead (Agkistrodon c. contortrix) snakes. Toxicon 1982; 20 (02) 427-432
  • 180 Randolph A, Chamberlain SH, Chu HL, Retzios AD, Markland Jr FS, Masiarz FR. Amino acid sequence of fibrolase, a direct-acting fibrinolytic enzyme from Agkistrodon contortrix contortrix venom. Protein Sci 1992; 1 (05) 590-600
  • 181 Ouriel K, Cynamon J, Weaver FA. , et al. A phase I trial of alfimeprase for peripheral arterial thrombolysis. J Vasc Interv Radiol 2005; 16 (08) 1075-1083
  • 182 Moll S, Kenyon P, Bertoli L, De Maio J, Homesley H, Deitcher SR. Phase II trial of alfimeprase, a novel-acting fibrin degradation agent, for occluded central venous access devices. J Clin Oncol 2006; 24 (19) 3056-3060
  • 183 Markland FS, Swenson S. Fibrolase: trials and tribulations. Toxins (Basel) 2010; 2 (04) 793-808
  • 184 Zhang Y, Wisner A, Xiong Y, Bon C. A novel plasminogen activator from snake venom. Purification, characterization, and molecular cloning. J Biol Chem 1995; 270 (17) 10246-10255
  • 185 Park D, Kim H, Chung K, Kim DS, Yun Y. Expression and characterization of a novel plasminogen activator from Agkistrodon halys venom. Toxicon 1998; 36 (12) 1807-1819
  • 186 Anisuzzaman MK, Islam MK, Alim MA. , et al. Longistatin, a plasminogen activator, is key to the availability of blood-meals for ixodid ticks. PLoS Pathog 2011; 7 (03) e1001312
  • 187 Krätzschmar J, Haendler B, Langer G. , et al. The plasminogen activator family from the salivary gland of the vampire bat Desmodus rotundus: cloning and expression. Gene 1991; 105 (02) 229-237
  • 188 Gardell SJ, Duong LT, Diehl RE. , et al. Isolation, characterization, and cDNA cloning of a vampire bat salivary plasminogen activator. J Biol Chem 1989; 264 (30) 17947-17952
  • 189 Furlan AJ, Eyding D, Albers GW. , et al; DEDAS Investigators. Dose Escalation of Desmoteplase for Acute Ischemic Stroke (DEDAS): evidence of safety and efficacy 3 to 9 hours after stroke onset. Stroke 2006; 37 (05) 1227-1231
  • 190 Hacke W, Furlan AJ, Al-Rawi Y. , et al. Intravenous desmoteplase in patients with acute ischaemic stroke selected by MRI perfusion-diffusion weighted imaging or perfusion CT (DIAS-2): a prospective, randomised, double-blind, placebo-controlled study. Lancet Neurol 2009; 8 (02) 141-150
  • 191 Hacke W, Albers G, Al-Rawi Y. , et al; DIAS Study Group. The Desmoteplase in Acute Ischemic Stroke Trial (DIAS): a phase II MRI-based 9-hour window acute stroke thrombolysis trial with intravenous desmoteplase. Stroke 2005; 36 (01) 66-73
  • 192 Albers GW, von Kummer R, Truelsen T. , et al; DIAS-3 Investigators. Safety and efficacy of desmoteplase given 3-9 h after ischaemic stroke in patients with occlusion or high-grade stenosis in major cerebral arteries (DIAS-3): a double-blind, randomised, placebo-controlled phase 3 trial. Lancet Neurol 2015; 14 (06) 575-584
  • 193 von Kummer R, Mori E, Truelsen T. , et al; DIAS-4 Investigators. Desmoteplase 3 to 9 hours after major artery occlusion stroke: the DIAS-4 trial (efficacy and safety study of desmoteplase to treat acute ischemic stroke). Stroke 2016; 47 (12) 2880-2887
  • 194 Finney S, Seale L, Sawyer RT, Wallis RB. Tridegin, a new peptidic inhibitor of factor XIIIa, from the blood-sucking leech Haementeria ghilianii . Biochem J 1997; 324 (Pt 3): 797-805
  • 195 Baskova IP, Nikonov GI. Destabilase, the novel epsilon-(gamma-Glu)-Lys isopeptidase with thrombolytic activity. Blood Coagul Fibrinolysis 1991; 2 (01) 167-172
  • 196 Zavalova LL, Baskova IP, Lukyanov SA. , et al. Destabilase from the medicinal leech is a representative of a novel family of lysozymes. Biochim Biophys Acta 2000; 1478 (01) 69-77
  • 197 Ondetti MA, Williams NJ, Sabo EF, Pluscec J, Weaver ER, Kocy O. Angiotensin-converting enzyme inhibitors from the venom of Bothrops jararaca. Isolation, elucidation of structure, and synthesis. Biochemistry 1971; 10 (22) 4033-4039
  • 198 Keim Jr GR, Kirpan J, Peterson AE. , et al. Inhibition of angiotensin I-initiated hemodynamic changes in anesthetized dogs by a synthetic nonapeptide. Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and Medicine, New York, NY, 1972;140(1):149–152
  • 199 Loyke HF. Dose response of SQ 20, 858 in chronic renal hypertension. Pharmacol Res Commun 1977; 9 (02) 181-186
  • 200 Marcic B, Deddish PA, Jackman HL, Erdös EG. Enhancement of bradykinin and resensitization of its B2 receptor. Hypertension 1999; 33 (03) 835-843
  • 201 Cushman DW, Ondetti MA. Design of angiotensin converting enzyme inhibitors. Nat Med 1999; 5 (10) 1110-1113
  • 202 Mueller S, Gothe R, Siems WD, Vietinghoff G, Paegelow I, Reissmann S. Potentiation of bradykinin actions by analogues of the bradykinin potentiating nonapeptide BPP9alpha. Peptides 2005; 26 (07) 1235-1247
  • 203 Guerreiro JR, Lameu C, Oliveira EF. , et al. Argininosuccinate synthetase is a functional target for a snake venom anti-hypertensive peptide: role in arginine and nitric oxide production. J Biol Chem 2009; 284 (30) 20022-20033
  • 204 Ianzer D, Xavier CH, Fraga FC. , et al. BPP-5a produces a potent and long-lasting NO-dependent antihypertensive effect. Ther Adv Cardiovasc Dis 2011; 5 (06) 281-295
  • 205 Morais KL, Hayashi MA, Bruni FM. , et al. Bj-PRO-5a, a natural angiotensin-converting enzyme inhibitor, promotes vasodilatation mediated by both bradykinin B2 and M1 muscarinic acetylcholine receptors. Biochem Pharmacol 2011; 81 (06) 736-742
  • 206 Gilio JM, Portaro FC, Borella MI, Lameu C, Camargo AC, Alberto-Silva C. A bradykinin-potentiating peptide (BPP-10c) from Bothrops jararaca induces changes in seminiferous tubules. J Venom Anim Toxins Incl Trop Dis 2013; 19 (01) 28
  • 207 Cotton J, Hayashi MA, Cuniasse P. , et al. Selective inhibition of the C-domain of angiotensin I converting enzyme by bradykinin potentiating peptides. Biochemistry 2002; 41 (19) 6065-6071
  • 208 Denadai AM, Ianzer D, Alcântara AF. , et al. Novel pharmaceutical composition of bradykinin potentiating penta peptide with beta-cyclodextrin: physical-chemical characterization and anti-hypertensive evaluation. Int J Pharm 2007; 336 (01) 90-98
  • 209 Suzuki T, Yamazaki T, Yazaki Y. The role of the natriuretic peptides in the cardiovascular system. Cardiovasc Res 2001; 51 (03) 489-494
  • 210 Vink S, Jin AH, Poth KJ, Head GA, Alewood PF. Natriuretic peptide drug leads from snake venom. Toxicon 2012; 59 (04) 434-445
  • 211 Joseph R, Pahari S, Hodgson WC, Kini RM. Hypotensive agents from snake venoms. Curr Drug Targets Cardiovasc Haematol Disord 2004; 4 (04) 437-459
  • 212 Schweitz H, Heurteaux C, Bois P, Moinier D, Romey G, Lazdunski M. Calcicludine, a venom peptide of the Kunitz-type protease inhibitor family, is a potent blocker of high-threshold Ca2+ channels with a high affinity for L-type channels in cerebellar granule neurons. Proc Natl Acad Sci U S A 1994; 91 (03) 878-882
  • 213 Chen HH, Lainchbury JG, Burnett Jr JC. Natriuretic peptide receptors and neutral endopeptidase in mediating the renal actions of a new therapeutic synthetic natriuretic peptide dendroaspis natriuretic peptide. J Am Coll Cardiol 2002; 40 (06) 1186-1191
  • 214 Lisy O, Huntley BK, McCormick DJ, Kurlansky PA, Burnett Jr JC. Design, synthesis, and actions of a novel chimeric natriuretic peptide: CD-NP. J Am Coll Cardiol 2008; 52 (01) 60-68
  • 215 von Lueder TG, Krum H. New medical therapies for heart failure. Nat Rev Cardiol 2015; 12 (12) 730-740
  • 216 Capricor Therapeutics Provides Update on Natriuretic Peptide Program. http://www.irdirect.net/prviewer/release/id/2342502 . 2017. Accessed January 2, 2018
  • 217 Sridharan S, Kini RM. Tail wags the dog: activity of krait natriuretic peptide is determined by its C-terminal tail in a natriuretic peptide receptor-independent manner. Biochem J 2015; 469 (02) 255-266
  • 218 Sridharan S, Kini RM. Decoding the molecular switches of natriuretic peptides which differentiate its vascular and renal functions. Biochem J 2018; 475 (02) 399-413
  • 219 Zhong J, Zeng X-C, Zeng X. , et al. Transcriptomic analysis of the venom glands from the scorpion Hadogenes troglodytes revealed unique and extremely high diversity of the venom peptides. J Proteomics 2017; 150: 40-62
  • 220 Zhang L, Shi W, Zeng X-C. , et al. Unique diversity of the venom peptides from the scorpion Androctonus bicolor revealed by transcriptomic and proteomic analysis. J Proteomics 2015; 128: 231-250
  • 221 Petras D, Heiss P, Harrison RA, Süssmuth RD, Calvete JJ. Top-down venomics of the East African green mamba, Dendroaspis angusticeps, and the black mamba, Dendroaspis polylepis, highlight the complexity of their toxin arsenals. J Proteomics 2016; 146: 148-164
  • 222 Dutertre S, Jin AH, Kaas Q, Jones A, Alewood PF, Lewis RJ. Deep venomics reveals the mechanism for expanded peptide diversity in cone snail venom. Mol Cell Proteomics 2013; 12 (02) 312-329
  • 223 Kozlov SA, Lazarev VN, Kostryukova ES. , et al. Comprehensive analysis of the venom gland transcriptome of the spider Dolomedes fimbriatus . Sci Data 2014; 1: 140023
  • 224 Monleón D, Esteve V, Kovacs H, Calvete JJ, Celda B. Conformation and concerted dynamics of the integrin-binding site and the C-terminal region of echistatin revealed by homonuclear NMR. Biochem J 2005; 387 (Pt 1): 57-66
  • 225 Adler M, Lazarus RA, Dennis MS, Wagner G. Solution structure of kistrin, a potent platelet aggregation inhibitor and GP IIb-IIIa antagonist. Science 1991; 253 (5018): 445-448
  • 226 Carbajo RJ, Sanz L, Perez A, Calvete JJ. NMR structure of bitistatin – a missing piece in the evolutionary pathway of snake venom disintegrins. FEBS J 2015; 282 (02) 341-360
  • 227 Bilgrami S, Tomar S, Yadav S. , et al. Crystal structure of schistatin, a disintegrin homodimer from saw-scaled viper (Echis carinatus) at 2.5 A resolution. J Mol Biol 2004; 341 (03) 829-837