Thromb Haemost 2018; 118(09): 1586-1599
DOI: 10.1055/s-0038-1667015
Endothelium and Angiogenesis
Georg Thieme Verlag KG Stuttgart · New York

Endothelial Cells Harbouring the JAK2V617F Mutation Display Pro-Adherent and Pro-Thrombotic Features

Anna Guadall*
1   INSERM, UMRS_1131, Institut Universitaire d'Hématologie, Université Paris-Diderot, Hopital Saint-Louis, Paris, France
,
Elodie Lesteven*
1   INSERM, UMRS_1131, Institut Universitaire d'Hématologie, Université Paris-Diderot, Hopital Saint-Louis, Paris, France
,
Gil Letort
1   INSERM, UMRS_1131, Institut Universitaire d'Hématologie, Université Paris-Diderot, Hopital Saint-Louis, Paris, France
,
Sarah Awan Toor
1   INSERM, UMRS_1131, Institut Universitaire d'Hématologie, Université Paris-Diderot, Hopital Saint-Louis, Paris, France
,
Marc Delord
2   Bioinformatique, Institut Universitaire d'Hématologie, Université Paris-Diderot, Hopital Saint-Louis, Paris, France
,
Doriane Pognant
1   INSERM, UMRS_1131, Institut Universitaire d'Hématologie, Université Paris-Diderot, Hopital Saint-Louis, Paris, France
,
Mégane Brusson
3   INSERM, INTS, Unité Biologie Intégrée du Globule Rouge, Paris, France
,
Emmanuelle Verger
1   INSERM, UMRS_1131, Institut Universitaire d'Hématologie, Université Paris-Diderot, Hopital Saint-Louis, Paris, France
4   APHP, Laboratoire de Biologie Cellulaire, Hopital Saint-Louis, Paris, France
,
Nabih Maslah
1   INSERM, UMRS_1131, Institut Universitaire d'Hématologie, Université Paris-Diderot, Hopital Saint-Louis, Paris, France
4   APHP, Laboratoire de Biologie Cellulaire, Hopital Saint-Louis, Paris, France
,
Stéphane Giraudier
1   INSERM, UMRS_1131, Institut Universitaire d'Hématologie, Université Paris-Diderot, Hopital Saint-Louis, Paris, France
4   APHP, Laboratoire de Biologie Cellulaire, Hopital Saint-Louis, Paris, France
5   Universite Paris Diderot, Paris, France
,
Jerome Larghero
6   APHP, Laboratoire de Therapie Cellulaire, Hopital Saint-Louis, Paris, France
,
Valerie Vanneaux
6   APHP, Laboratoire de Therapie Cellulaire, Hopital Saint-Louis, Paris, France
,
Christine Chomienne
1   INSERM, UMRS_1131, Institut Universitaire d'Hématologie, Université Paris-Diderot, Hopital Saint-Louis, Paris, France
4   APHP, Laboratoire de Biologie Cellulaire, Hopital Saint-Louis, Paris, France
5   Universite Paris Diderot, Paris, France
,
Wassim El Nemer
3   INSERM, INTS, Unité Biologie Intégrée du Globule Rouge, Paris, France
,
Bruno Cassinat
1   INSERM, UMRS_1131, Institut Universitaire d'Hématologie, Université Paris-Diderot, Hopital Saint-Louis, Paris, France
4   APHP, Laboratoire de Biologie Cellulaire, Hopital Saint-Louis, Paris, France
,
Jean-Jacques Kiladjian**
1   INSERM, UMRS_1131, Institut Universitaire d'Hématologie, Université Paris-Diderot, Hopital Saint-Louis, Paris, France
5   Universite Paris Diderot, Paris, France
7   APHP, Centre d'Investigations Cliniques, Hopital Saint-Louis, Paris, France
› Author Affiliations
Funding This work has been supported by grants from INCa (PLBio), Lilly Research Programs and Novartis.
Further Information

Publication History

18 April 2018

06 June 2018

Publication Date:
13 August 2018 (online)

Abstract

Thromboembolic events are the main cause of mortality in BCR-ABL1-negative myeloproliferative neoplasms (MPNs) but their underlying mechanisms are largely unrecognized. The Janus kinase 2 (JAK2)V617F mutation is the most frequent genetic alteration leading to MPN. Usually found in haematopoietic progenitors and stem cells, this mutation has also been described in endothelial cells (ECs) of MPN patients. In this study, we have questioned the impact of the JAK2V617F mutation on EC phenotype and functions. We developed an induced pluripotent stem cells strategy to compare JAK2 mutant and wild-type ECs. Transcriptomic assays showed that several genes and pathways involved in inflammation, cell adhesion and thrombotic events were over-represented in JAK2V617F ECs and expression levels of von Willebrand factor and P-selectin (CD62P) proteins were increased. Finally, we found that leucocytes from MPN patients adhere more tightly to JAK2V617F ECs. Our results show that JAK2V617F ECs have a pro-inflammatory and pro-thrombotic phenotype and were functionally pro-adherent.

* These authors contributed equally to this work.


** Jean-Jacques Kiladjian co-supervised the study.


Supplementary Material

 
  • References

  • 1 James C, Ugo V, Le Couédic JP. , et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005; 434 (7037): 1144-1148
  • 2 Vainchenker W, Delhommeau F, Constantinescu SN, Bernard OA. New mutations and pathogenesis of myeloproliferative neoplasms. Blood 2011; 118 (07) 1723-1735
  • 3 Falanga A, Marchetti M. Thrombosis in myeloproliferative neoplasms. Semin Thromb Hemost 2014; 40 (03) 348-358
  • 4 De Stefano V, Qi X, Betti S, Rossi E. Splanchnic vein thrombosis and myeloproliferative neoplasms: molecular-driven diagnosis and long-term treatment. Thromb Haemost 2016; 115 (02) 240-249
  • 5 Kiladjian JJ, Cervantes F, Leebeek FW. , et al. The impact of JAK2 and MPL mutations on diagnosis and prognosis of splanchnic vein thrombosis: a report on 241 cases. Blood 2008; 111 (10) 4922-4929
  • 6 Sozer S, Fiel MI, Schiano T, Xu M, Mascarenhas J, Hoffman R. The presence of JAK2V617F mutation in the liver endothelial cells of patients with Budd-Chiari syndrome. Blood 2009; 113 (21) 5246-5249
  • 7 Rosti V, Villani L, Riboni R. , et al; Associazione Italiana per la Ricerca sul Cancro Gruppo Italiano Malattie Mieloproliferative (AGIMM) investigators. Spleen endothelial cells from patients with myelofibrosis harbor the JAK2V617F mutation. Blood 2013; 121 (02) 360-368
  • 8 Teofili L, Martini M, Iachininoto MG. , et al. Endothelial progenitor cells are clonal and exhibit the JAK2(V617F) mutation in a subset of thrombotic patients with Ph-negative myeloproliferative neoplasms. Blood 2011; 117 (09) 2700-2707
  • 9 Patsch C, Challet-Meylan L, Thoma EC. , et al. Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells. Nat Cell Biol 2015; 17 (08) 994-1003
  • 10 Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2007; 8 (01) 118-127
  • 11 Ritchie ME, Phipson B, Wu D. , et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 2015; 43 (07) e47
  • 12 Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. Controlling the false discovery rate in behavior genetics research. Behav Brain Res 2001; 125 (1-2): 279-284
  • 13 Subramanian A, Tamayo P, Mootha VK. , et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 2005; 102 (43) 15545-15550
  • 14 Mootha VK, Lindgren CM, Eriksson KF. , et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 2003; 34 (03) 267-273
  • 15 Hur J, Yoon CH, Kim HS. , et al. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler Thromb Vasc Biol 2004; 24 (02) 288-293
  • 16 Kalogeris TJ, Baines C, Korthuis RJ. Adenosine prevents TNFα-induced decrease in endothelial mitochondrial mass via activation of eNOS-PGC-1α regulatory axis. PLoS One 2014; 9 (06) e98459
  • 17 Favaloro EJ. Differential expression of surface antigens on activated endothelium. Immunol Cell Biol 1993; 71 (Pt 6): 571-581
  • 18 Nieves Torres EC, Yang B, Roy B. , et al. Adventitial delivery of lentivirus-shRNA-ADAMTS-1 reduces venous stenosis formation in arteriovenous fistula. PLoS One 2014; 9 (04) e94510
  • 19 Misra S, Lee N, Fu AA. , et al. Increased expression of a disintegrin and metalloproteinase thrombospondin 1 in thrombosed hemodialysis grafts. J Vasc Interv Radiol 2008; 19 (01) 111-119
  • 20 Schaff M, Receveur N, Bourdon C. , et al. Novel function of tenascin-C, a matrix protein relevant to atherosclerosis, in platelet recruitment and activation under flow. Arterioscler Thromb Vasc Biol 2011; 31 (01) 117-124
  • 21 McGee M, Wagner WD. Chondroitin sulfate anticoagulant activity is linked to water transfer: relevance to proteoglycan structure in atherosclerosis. Arterioscler Thromb Vasc Biol 2003; 23 (10) 1921-1927
  • 22 Stojkovic S, Kaun C, Basilio J. , et al. Tissue factor is induced by interleukin-33 in human endothelial cells: a new link between coagulation and inflammation. Sci Rep 2016; 6: 25171
  • 23 Nussbaum C, Bannenberg S, Keul P. , et al. Sphingosine-1-phosphate receptor 3 promotes leukocyte rolling by mobilizing endothelial P-selectin. Nat Commun 2015; 6: 6416
  • 24 van Hooren KW, Spijkers LJ, van Breevoort D. , et al. Sphingosine-1-phosphate receptor 3 mediates sphingosine-1-phosphate induced release of Weibel-Palade bodies from endothelial cells. PLoS One 2014; 9 (03) e91346
  • 25 Falanga A, Marchetti M. Thrombotic disease in the myeloproliferative neoplasms. Hematology (Am Soc Hematol Educ Program) 2012; 2012: 571-581
  • 26 Takata Y, Seki R, Kanajii T. , et al. Association between thromboembolic events and the JAK2 V617F mutation in myeloproliferative neoplasms. Kurume Med J 2014; 60 (3-4): 89-97
  • 27 Robinton DA, Daley GQ. The promise of induced pluripotent stem cells in research and therapy. Nature 2012; 481 (7381): 295-305
  • 28 Raya A, Rodríguez-Pizà I, Guenechea G. , et al. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 2009; 460 (7251): 53-59
  • 29 Ye Z, Zhan H, Mali P. , et al. Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood 2009; 114 (27) 5473-5480
  • 30 Li M, Cascino P, Ummarino S, Di Ruscio A. Application of induced pluripotent stem cell technology to the study of hematological diseases. Cells 2017; 6 (01) E7
  • 31 Gu M, Shao NY, Sa S. , et al. Patient-specific iPSC-derived endothelial cells uncover pathways that protect against pulmonary hypertension in BMPR2 mutation carriers. Cell Stem Cell 2017; 20 (04) 490-504
  • 32 Hamauchi S, Shichinohe H, Uchino H. , et al. Cellular functions and gene and protein expression profiles in endothelial cells derived from moyamoya disease-specific iPS cells. PLoS One 2016; 11 (09) e0163561
  • 33 Saliba J, Hamidi S, Lenglet G. , et al. Heterozygous and homozygous JAK2(V617F) states modeled by induced pluripotent stem cells from myeloproliferative neoplasm patients. PLoS One 2013; 8 (09) e74257
  • 34 Ye Z, Liu CF, Lanikova L. , et al. Differential sensitivity to JAK inhibitory drugs by isogenic human erythroblasts and hematopoietic progenitors generated from patient-specific induced pluripotent stem cells. Stem Cells 2014; 32 (01) 269-278
  • 35 Lin CH, Kaushansky K, Zhan H. JAK2V617F-mutant vascular niche contributes to JAK2V617F clonal expansion in myeloproliferative neoplasms. Blood Cells Mol Dis 2016; 62: 42-48
  • 36 Hobbs CM, Manning H, Bennett C. , et al. JAK2V617F leads to intrinsic changes in platelet formation and reactivity in a knock-in mouse model of essential thrombocythemia. Blood 2013; 122 (23) 3787-3797
  • 37 Zaleskas VM, Krause DS, Lazarides K. , et al. Molecular pathogenesis and therapy of polycythemia induced in mice by JAK2 V617F. PLoS One 2006; 1: e18
  • 38 Lamrani L, Lacout C, Ollivier V. , et al. Hemostatic disorders in a JAK2V617F-driven mouse model of myeloproliferative neoplasm. Blood 2014; 124 (07) 1136-1145
  • 39 Etheridge SL, Roh ME, Cosgrove ME. , et al. JAK2V617F-positive endothelial cells contribute to clotting abnormalities in myeloproliferative neoplasms. Proc Natl Acad Sci U S A 2014; 111 (06) 2295-2300
  • 40 Rauch A, Wohner N, Christophe OD, Denis CV, Susen S, Lenting PJ. On the versatility of von Willebrand factor. Mediterr J Hematol Infect Dis 2013; 5 (01) e2013046
  • 41 Zarbock A, Ley K, McEver RP, Hidalgo A. Leukocyte ligands for endothelial selectins: specialized glycoconjugates that mediate rolling and signaling under flow. Blood 2011; 118 (26) 6743-6751
  • 42 Gupta N, Edelmann B, Schnoeder TM. , et al. JAK2-V617F activates β1-integrin-mediated adhesion of granulocytes to vascular cell adhesion molecule 1. Leukemia 2017; 31 (05) 1223-1226
  • 43 Tadmor T, Bejar J, Attias D. , et al. The expression of lysyl-oxidase gene family members in myeloproliferative neoplasms. Am J Hematol 2013; 88 (05) 355-358
  • 44 Matsuura S, Mi R, Koupenova M. , et al. Lysyl oxidase is associated with increased thrombosis and platelet reactivity. Blood 2016; 127 (11) 1493-1501
  • 45 Zhan H, Lin CHS, Segal Y, Kaushansky K. The JAK2V617F-bearing vascular niche promotes clonal expansion in myeloproliferative neoplasms. Leukemia 2018; 32 (02) 462-469
  • 46 Ohneda O, Ohneda K, Arai F. , et al. ALCAM (CD166): its role in hematopoietic and endothelial development. Blood 2001; 98 (07) 2134-2142
  • 47 Uenishi G, Theisen D, Lee JH. , et al. Tenascin C promotes hematoendothelial development and T lymphoid commitment from human pluripotent stem cells in chemically defined conditions. Stem Cell Reports 2014; 3 (06) 1073-1084
  • 48 Nakamura-Ishizu A, Okuno Y, Omatsu Y. , et al. Extracellular matrix protein tenascin-C is required in the bone marrow microenvironment primed for hematopoietic regeneration. Blood 2012; 119 (23) 5429-5437
  • 49 Wallace TA, VonDerLinden D, He K, Frank SJ, Sayeski PP. Microarray analyses identify JAK2 tyrosine kinase as a key mediator of ligand-independent gene expression. Am J Physiol Cell Physiol 2004; 287 (04) C981-C991