Vet Comp Orthop Traumatol 2018; 31(06): 422-430
DOI: 10.1055/s-0038-1668113
Original Research
Georg Thieme Verlag KG Stuttgart · New York

Reproducibility, Accuracy and Effect of Autoclave Sterilization on a Thermoplastic Three-Dimensional Model Printed by a Desktop Fused Deposition Modelling Three-Dimensional Printer

Jean-François Boursier
1   Service de Chirurgie, Centre Hospitalier Vétérinaire Pommery, Reims, France
Alexandre Fournet
2   Service de Chirurgie, Centre Hospitalier Vétérinaire d'Alfort, Université Paris Est Créteil-Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
3   Biomecanique et Biomateriaux Osteo-articulaires, UMR 7052, Paris, France
Jean Bassanino
1   Service de Chirurgie, Centre Hospitalier Vétérinaire Pommery, Reims, France
Mathieu Manassero
2   Service de Chirurgie, Centre Hospitalier Vétérinaire d'Alfort, Université Paris Est Créteil-Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
Anne-Sophie Bedu
4   Service d'Imagerie Médicale, Centre Hospitalier Vétérinaire Pommery, Reims, France
Dimitri Leperlier
1   Service de Chirurgie, Centre Hospitalier Vétérinaire Pommery, Reims, France
› Author Affiliations
Further Information

Publication History

18 December 2017

29 May 2018

Publication Date:
09 October 2018 (online)


Objectives The main purpose of this study was to determine the reproducibility and accuracy of a three-dimensional (3D) bone model printed on a desktop 3D-printer based on fused deposition modelling (FDM) technology with polylactic acid (PLA) and the effect of autoclave sterilization on the printed models.

Methods Computed tomographic images of the tibia were obtained from 10 feline cadavers, used to create a bone surface-rendering file and sent to the 3D printing software. Right and left tibias were each printed five times with the FDM desktop 3D printer using PLA plastic material. Plastic models and cadaveric bones were measured with a profile projector device at six predetermined landmarks. Plastic bones were then sterilized using an autoclave before being re-measured applying the same method. Analyses of printed model size reliability were conducted using intra-class correlation coefficients (ICC) and Bland–Altman plots.

Results The ICC always showed an almost perfect agreement when comparing 3D-printed models issued from the same cadaveric bone. The ICC showed moderate agreement for one measurement and strong/perfect agreement for others when comparing a cadaveric bone with the corresponding 3D model. Concerning the comparison of the same 3D-printed model, before and after sterilization, ICC showed either strong or perfect agreement.

Clinical Significance Rapid-prototyping with our FDM desktop 3D-printer using PLA was an accurate, a reproducible and a sterilization-compliant way to obtain 3D plastic models.

Author Contributions

Jean-François Boursier contributed to conception of study, study design, and acquisition of data and data analysis and interpretation. Alexandre Fournet, Mathieu Manassero, Anne-Sophie Bedu and Dimitri Leperlier contributed to conception of study, study design, and data analysis and interpretation. Jean Bassanino contributed to acquisition of data and data analysis and interpretation. All authors drafted, revised and approved the submitted manuscript.

  • References

  • 1 Hespel AM, Wilhite R, Hudson J. Invited review—applications for 3D printers in veterinary medicine. Vet Radiol Ultrasound 2014; 55 (04) 347-358
  • 2 Fadero PE, Shah M. Three dimensional (3D) modelling and surgical planning in trauma and orthopaedics. Surgeon 2014; 12 (06) 328-333
  • 3 Chana-Rodríguez F, Mañanes RP, Rojo-Manaute J, Gil P, Martínez-Gómiz JM, Vaquero-Martín J. 3D surgical printing and pre contoured plates for acetabular fractures. Injury 2016; 47 (11) 2507-2511
  • 4 Cimerman M, Kristan A. Preoperative planning in pelvic and acetabular surgery: the value of advanced computerised planning modules. Injury 2007; 38 (04) 442-449
  • 5 Cohen A, Laviv A, Berman P, Nashef R, Abu-Tair J. Mandibular reconstruction using stereolithographic 3-dimensional printing modeling technology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 108 (05) 661-666
  • 6 Rengier F, Mehndiratta A, von Tengg-Kobligk H. , et al. 3D printing based on imaging data: review of medical applications. Int J CARS 2010; 5 (04) 335-341
  • 7 D'Urso PS, Barker TM, Earwaker WJ. , et al. Stereolithographic biomodelling in cranio-maxillofacial surgery: a prospective trial. J Craniomaxillofac Surg 1999; 27 (01) 30-37
  • 8 Mavili ME, Canter HI, Saglam-Aydinatay B, Kamaci S, Kocadereli I. Use of three-dimensional medical modeling methods for precise planning of orthognathic surgery. J Craniofac Surg 2007; 18 (04) 740-747
  • 9 Brown GA, Firoozbakhsh K, DeCoster TA, Reyna Jr JR, Moneim M. Rapid prototyping: the future of trauma surgery?. J Bone Joint Surg Am 2003; 85-A (Suppl. 04) 49-55
  • 10 McGurk M, Amis AA, Potamianos P, Goodger NM. Rapid prototyping techniques for anatomical modelling in medicine. Ann R Coll Surg Engl 1997; 79 (03) 169-174
  • 11 Fortheine F, Ohnsorge JA, Schkommodau E. , et al. CT-based planning and individual template navigation in TKA. In: Stiehl JB, Konermann WH, Haaker RG. , eds. Navigation and Robotics in Total Joint and Spine Surgery. Berlin, Germany: Springer; 2004: 336-342
  • 12 Radermacher K, Portheine F, Anton M. , et al. Computer assisted orthopaedic surgery with image based individual templates. Clin Orthop Relat Res 1998; (354) 28-38
  • 13 Yu AW, Duncan JM, Daurka JS, Lewis A, Cobb J. A feasibility study into the use of three-dimensional printer modelling in acetabular fracture surgery. Adv Orthop 2015; 2015: 617046
  • 14 Tack P, Victor J, Gemmel P, Annemans L. 3D-printing techniques in a medical setting: a systematic literature review. Biomed Eng Online 2016; 15 (01) 115
  • 15 Hoang D, Perrault D, Stevanovic M, Ghiassi A. Surgical applications of three-dimensional printing: a review of the current literature & how to get started. Ann Transl Med 2016; 4 (23) 456
  • 16 Cone JA, Martin TM, Marcellin-Little DJ, Harrysson OLA, Griffith EH. Accuracy and repeatability of long-bone replicas of small animals fabricated by use of low-end and high-end commercial three-dimensional printers. Am J Vet Res 2017; 78 (08) 900-905
  • 17 Fitzwater KL, Marcellin-Little DJ, Harrysson OL, Osborne JA, Poindexter EC. Evaluation of the effect of computed tomography scan protocols and freeform fabrication methods on bone biomodel accuracy. Am J Vet Res 2011; 72 (09) 1178-1185
  • 18 Wu AM, Shao ZX, Wang JS. , et al. The accuracy of a method for printing three-dimensional spinal models. PLoS One 2015; 10 (04) e0124291
  • 19 Unger M, Montavon PM, Heim UFA. Classification of fractures of long bones in the dog and cat: introduction and clinical application. Vet Comp Orthop Traumatol 1990; 3 (02) 5-14
  • 20 Boone EG, Johnson AL, Hohn RB. Distal tibial fractures in dogs and cats. J Am Vet Med Assoc 1986; 188 (01) 36-40
  • 21 Boone EG, Johnson AL, Montavon P, Hohn RB. Fractures of the tibial diaphysis in dogs and cats. J Am Vet Med Assoc 1986; 188 (01) 41-45
  • 22 White D, Chelule KL, Seedhom BB. Accuracy of MRI vs CT imaging with particular reference to patient specific templates for total knee replacement surgery. Int J Med Robot 2008; 4 (03) 224-231
  • 23 Oxley B. Bilateral shoulder arthrodesis in a Pekinese using three-dimensional printed patient-specific osteotomy and reduction guides. Vet Comp Orthop Traumatol 2017; 30 (03) 230-236
  • 24 Oxley B, Behr S. Stabilisation of a cranial cervical vertebral fracture using a 3D-printed patient-specific drill guide. J Small Anim Pract 2016; 57 (05) 277