Hamostaseologie 2018; 38(04): 186-202
DOI: 10.1055/s-0038-1669450
Review Article
Georg Thieme Verlag KG Stuttgart · New York

The Mutual Relation of Platelet Activation and Innate Immunity

Felix Eisinger
1   Section for Cardioimmunology, Department of Cardiovascular Medicine, University of Tuebingen, Tuebingen, Germany
,
Harald F. Langer
1   Section for Cardioimmunology, Department of Cardiovascular Medicine, University of Tuebingen, Tuebingen, Germany
2   University Clinic for Cardiovascular Medicine, University of Tuebingen, Tuebingen, Germany
› Author Affiliations
Further Information

Publication History

17 April 2018

19 July 2018

Publication Date:
25 September 2018 (online)

Abstract

Platelets are known to be central regulators of haemostasis, inflammation and immune response. Formed by megakaryocytes in the bone marrow and the lungs, platelets express a broad range of adhesion receptors and release cytokines and platelet microparticles which enable them to interact with both immune cells and pathogens. In bacterial and viral infections, thrombophilia and thrombocytopenia are commonly seen symptoms, indicating the close relationship between haemostasis and immune defence. Indeed, platelets contribute both directly and via immune mediation to pathogen clearance. In sterile inflammation, a pathogen-free process which is often triggered by cell necrosis and autoimmune reactions, platelets are also of central importance. Recently, platelet inflammasome has been extensively studied in this context. Both sterile inflammation and infection are affected by the interactions of platelets and innate immunity, notably the complement system. Although the general elements of this interplay have been known for long, more and more insights into disease-specific mechanisms could be gained recently. This review gives an outline of the current findings in the field of platelet–immune cell interactions and points out possible implications for clinical therapy.

Zusammenfassung

Thrombozyten sind bekanntlich zentrale Regulatoren von Blutstillung, Entzündung und Immunantwort. Gebildet von Megakaryozyten im Knochenmark und in der Lunge, exprimieren Plättchen eine breite Palette von Adhäsionsrezeptoren und setzen Cytokine und Plättchenmikropartikel frei, die es ihnen ermöglichen, sowohl mit Immunzellen als auch mit Pathogenen in Wechselwirkung zu treten. Bei bakteriellen und viralen Infektionen treten häufig Thrombophilie und Thrombozytopenie auf, was auf eine enge Beziehung zwischen Hämostase und Immunabwehr hinweist. In der Tat tragen Thrombozyten sowohl direkt als auch über die Immunmediation zur Pathogenclearance bei. Bei der sterilen Entzündung, einem pathogenfreien Prozess, der häufig durch Zellnekrose und Autoimmunreaktionen ausgelöst wird, sind Thrombozyten ebenfalls von zentraler Bedeutung. In letzter Zeit wurde das Thrombozyten-Inflammasom in diesem Zusammenhang ausführlich untersucht. Sowohl sterile Entzündungen als auch Infektionen werden durch die Wechselwirkungen von Blutplättchen und angeborener Immunität, insbesondere des Komplementsystems, beeinflusst. Obwohl die allgemeinen Elemente dieses Zusammenspiels seit langem bekannt sind, konnten in letzter Zeit mehr und mehr Einsichten in krankheitsspezifische Mechanismen gewonnen werden. Dieser Artikel gibt einen Überblick über die aktuellen Ergebnisse auf dem Gebiet der Wechselwirkungen zwischen Blutplättchen und Immunzellen und zeigt mögliche Implikationen für die klinische Therapie auf.

 
  • References

  • 1 Jackson SP. Arterial thrombosis-insidious, unpredictable and deadly. Nat Med 2011; 17 (11) 1423-1436
  • 2 Semple JW, Italiano Jr JE, Freedman J. Platelets and the immune continuum. Nat Rev Immunol 2011; 11 (04) 264-274
  • 3 Yeaman MR. Platelets: at the nexus of antimicrobial defence. Nat Rev Microbiol 2014; 12 (06) 426-437
  • 4 Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol 2013; 13 (01) 34-45
  • 5 Li JL, Zarbock A, Hidalgo A. Platelets as autonomous drones for hemostatic and immune surveillance. J Exp Med 2017; DOI: 10.1084/jem.20170879. . [Epub ahead of print]
  • 6 Langer HF, Choi EY, Zhou H. , et al. Platelets contribute to the pathogenesis of experimental autoimmune encephalomyelitis. Circ Res 2012; 110 (09) 1202-1210
  • 7 Schleicher RI, Reichenbach F, Kraft P. , et al. Platelets induce apoptosis via membrane-bound FasL. Blood 2015; 126 (12) 1483-1493
  • 8 Balduini A, Di Buduo CA, Kaplan DL. Translational approaches to functional platelet production ex vivo. Thromb Haemost 2016; 115 (02) 250-256
  • 9 Moreau T, Evans AL, Vasquez L. , et al. Large-scale production of megakaryocytes from human pluripotent stem cells by chemically defined forward programming. Nat Commun 2016; 7: 11208
  • 10 Sim X, Poncz M, Gadue P, French DL. Understanding platelet generation from megakaryocytes: implications for in vitro-derived platelets. Blood 2016; 127 (10) 1227-1233
  • 11 Nakamura S, Takayama N, Hirata S. , et al. Expandable megakaryocyte cell lines enable clinically applicable generation of platelets from human induced pluripotent stem cells. Cell Stem Cell 2014; 14 (04) 535-548
  • 12 Wang Y, Hayes V, Jarocha D. , et al. Comparative analysis of human ex vivo-generated platelets vs megakaryocyte-generated platelets in mice: a cautionary tale. Blood 2015; 125 (23) 3627-3636
  • 13 Machlus KR, Italiano Jr JE. The incredible journey: from megakaryocyte development to platelet formation. J Cell Biol 2013; 201 (06) 785-796
  • 14 Kaushansky K, Lok S, Holly RD. , et al. Promotion of megakaryocyte progenitor expansion and differentiation by the c-Mpl ligand thrombopoietin. Nature 1994; 369 (6481): 568-571
  • 15 Ng AP, Kauppi M, Metcalf D. , et al. Mpl expression on megakaryocytes and platelets is dispensable for thrombopoiesis but essential to prevent myeloproliferation. Proc Natl Acad Sci U S A 2014; 111 (16) 5884-5889
  • 16 Cortin V, Garnier A, Pineault N, Lemieux R, Boyer L, Proulx C. Efficient in vitro megakaryocyte maturation using cytokine cocktails optimized by statistical experimental design. Exp Hematol 2005; 33 (10) 1182-1191
  • 17 Machlus KR, Thon JN, Italiano Jr JE. Interpreting the developmental dance of the megakaryocyte: a review of the cellular and molecular processes mediating platelet formation. Br J Haematol 2014; 165 (02) 227-236
  • 18 Niswander LM, Fegan KH, Kingsley PD, McGrath KE, Palis J. SDF-1 dynamically mediates megakaryocyte niche occupancy and thrombopoiesis at steady state and following radiation injury. Blood 2014; 124 (02) 277-286
  • 19 Stegner D, vanEeuwijk JMM, Angay O. , et al. Thrombopoiesis is spatially regulated by the bone marrow vasculature. Nat Commun 2017; 8 (01) 127
  • 20 Sanjuan-Pla A, Macaulay IC, Jensen CT. , et al. Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy. Nature 2013; 502 (7470): 232-236
  • 21 Haas S, Hansson J, Klimmeck D. , et al. Inflammation-induced emergency megakaryopoiesis driven by hematopoietic stem cell-like megakaryocyte progenitors. Cell Stem Cell 2015; 17 (04) 422-434
  • 22 Masamoto Y, Kurokawa M. Inflammation-induced emergency megakaryopoiesis: inflammation paves the way for platelets. Stem Cell Investig 2016; 3: 16-16
  • 23 Italiano JE, Hartwig JH. Megakaryocyte Development and Platelet Formation. 3rd ed. Elsevier Inc.; 2013: 27-49
  • 24 Zhang L, Orban M, Lorenz M. , et al. A novel role of sphingosine 1-phosphate receptor S1pr1 in mouse thrombopoiesis. J Exp Med 2012; 209 (12) 2165-2181
  • 25 Lefrançais E, Ortiz-Muñoz G, Caudrillier A. , et al. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature 2017; 544 (7648): 105-109
  • 26 Hunt BJ. Bleeding and coagulopathies in critical care. N Engl J Med 2014; 370 (09) 847-859
  • 27 Langer HF, Daub K, Braun G. , et al. Platelets recruit human dendritic cells via Mac-1/JAM-C interaction and modulate dendritic cell function in vitro. Arterioscler Thromb Vasc Biol 2007; 27 (06) 1463-1470
  • 28 Verschoor A, Neuenhahn M, Navarini AA. , et al. A platelet-mediated system for shuttling blood-borne bacteria to CD8α+ dendritic cells depends on glycoprotein GPIb and complement C3. Nat Immunol 2011; 12 (12) 1194-1201
  • 29 Kwong JC, Schwartz KL, Campitelli MA. , et al. Acute myocardial infarction after laboratory-confirmed influenza infection. N Engl J Med 2018; 378 (04) 345-353
  • 30 Kreutz RP, Bliden KP, Tantry US, Gurbel PA. Viral respiratory tract infections increase platelet reactivity and activation: an explanation for the higher rates of myocardial infarction and stroke during viral illness. J Thromb Haemost 2005; 3 (09) 2108-2109
  • 31 Boilard E, Paré G, Rousseau M. , et al. Influenza virus H1N1 activates platelets through FcγRIIA signaling and thrombin generation. Blood 2014; 123 (18) 2854-2863
  • 32 Kerrigan SW, Douglas I, Wray A. , et al. A role for glycoprotein Ib in Streptococcus sanguis-induced platelet aggregation. Blood 2002; 100 (02) 509-516
  • 33 Miajlovic H, Zapotoczna M, Geoghegan JA, Kerrigan SW, Speziale P, Foster TJ. Direct interaction of iron-regulated surface determinant IsdB of Staphylococcus aureus with the GPIIb/IIIa receptor on platelets. Microbiology 2010; 156 (Pt 3): 920-928
  • 34 Keane C, Tilley D, Cunningham A. , et al. Invasive Streptococcus pneumoniae trigger platelet activation via Toll-like receptor 2. J Thromb Haemost 2010; 8 (12) 2757-2765
  • 35 Fitzgerald JR, Foster TJ, Cox D. The interaction of bacterial pathogens with platelets. Nat Rev Microbiol 2006; 4 (06) 445-457
  • 36 Arman M, Krauel K, Tilley DO. , et al. Amplification of bacteria-induced platelet activation is triggered by FcγRIIA, integrin αIIbβ3, and platelet factor 4. Blood 2014; 123 (20) 3166-3174
  • 37 Watson CN, Kerrigan SW, Cox D, Henderson IR, Watson SP, Arman M. Human platelet activation by Escherichia coli: roles for FcγRIIA and integrin αIIbβ3. Platelets 2016; 27 (06) 535-540
  • 38 Ilkan Z, Watson S, Watson SP, Mahaut-Smith MP. P2 × 1 receptors amplify FcγRIIa-induced Ca2+ increases and functional responses in human platelets. Thromb Haemost 2018; 118 (02) 369-380
  • 39 Kraemer BF, Campbell RA, Schwertz H. , et al. Novel anti-bacterial activities of β-defensin 1 in human platelets: suppression of pathogen growth and signaling of neutrophil extracellular trap formation. PLoS Pathog 2011; 7 (11) e1002355
  • 40 Gaertner F, Ahmad Z, Rosenberger G. , et al. Migrating Platelets Are Mechano-scavengers that Collect and Bundle Bacteria. Cell 2017; 171 (06) 1368-1382.e23 . doi: 10.1016/j.cell.2017.11.001
  • 41 Clark SR, Ma AC, Tavener SA. , et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 2007; 13 (04) 463-469
  • 42 Duerschmied D, Suidan GL, Demers M. , et al. Platelet serotonin promotes the recruitment of neutrophils to sites of acute inflammation in mice. Blood 2013; 121 (06) 1008-1015
  • 43 Czapiga M, Kirk AD, Lekstrom-Himes J. Platelets deliver costimulatory signals to antigen-presenting cells: a potential bridge between injury and immune activation. Exp Hematol 2004; 32 (02) 135-139
  • 44 Kaneider NC, Kaser A, Tilg H, Ricevuti G, Wiedermann CJ. CD40 ligand-dependent maturation of human monocyte-derived dendritic cells by activated platelets. Int J Immunopathol Pharmacol 2003; 16 (03) 225-231
  • 45 Maître B, Mangin PH, Eckly A. , et al. Immature myeloid dendritic cells capture and remove activated platelets from preformed aggregates. J Thromb Haemost 2010; 8 (10) 2262-2272
  • 46 Duffau P, Seneschal J, Nicco C. , et al. Platelet CD154 potentiates interferon-alpha secretion by plasmacytoid dendritic cells in systemic lupus erythematosus. Sci Transl Med 2010; 2 (47) 47ra63
  • 47 Krauel K, Pötschke C, Weber C. , et al. Platelet factor 4 binds to bacteria, [corrected] inducing antibodies cross-reacting with the major antigen in heparin-induced thrombocytopenia. Blood 2011; 117 (04) 1370-1378
  • 48 Ali RA, Wuescher LM, Dona KR, Worth RG. Platelets mediate host defense against Staphylococcus aureus through direct bactericidal activity and by enhancing macrophage activities. J Immunol 2017; 198 (01) 344-351
  • 49 Krijgsveld J, Zaat SA, Meeldijk J. , et al. Thrombocidins, microbicidal proteins from human blood platelets, are C-terminal deletion products of CXC chemokines. J Biol Chem 2000; 275 (27) 20374-20381
  • 50 Tang Y-Q, Yeaman MR, Selsted ME. Antimicrobial peptides from human platelets. Infect Immun 2002; 70 (12) 6524-6533
  • 51 Tohidnezhad M, Varoga D, Wruck CJ. , et al. Platelets display potent antimicrobial activity and release human beta-defensin 2. Platelets 2012; 23 (03) 217-223
  • 52 Wuescher LM, Takashima A, Worth RG. A novel conditional platelet depletion mouse model reveals the importance of platelets in protection against Staphylococcus aureus bacteremia. J Thromb Haemost 2015; 13 (02) 303-313
  • 53 Wong CH, Jenne CN, Petri B, Chrobok NL, Kubes P. Nucleation of platelets with blood-borne pathogens on Kupffer cells precedes other innate immunity and contributes to bacterial clearance. Nat Immunol 2013; 14 (08) 785-792
  • 54 Lang PA, Contaldo C, Georgiev P. , et al. Aggravation of viral hepatitis by platelet-derived serotonin. Nat Med 2008; 14 (07) 756-761
  • 55 Guidotti LG, Inverso D, Sironi L. , et al. Immunosurveillance of the liver by intravascular effector CD8(+) T cells. Cell 2015; 161 (03) 486-500
  • 56 Iannacone M, Sitia G, Isogawa M. , et al. Platelets mediate cytotoxic T lymphocyte-induced liver damage. Nat Med 2005; 11 (11) 1167-1169
  • 57 McMorran BJ, Marshall VM, de Graaf C. , et al. Platelets kill intraerythrocytic malarial parasites and mediate survival to infection. Science 2009; 323 (5915): 797-800
  • 58 McMorran BJ, Wieczorski L, Drysdale KE. , et al. Platelet factor 4 and Duffy antigen required for platelet killing of Plasmodium falciparum . Science 2012; 338 (6112): 1348-1351
  • 59 Love MS, Millholland MG, Mishra S. , et al. Platelet factor 4 activity against P. falciparum and its translation to nonpeptidic mimics as antimalarials. Cell Host Microbe 2012; 12 (06) 815-823
  • 60 Greenbaum DC, FitzGerald GA. Platelets, pyrexia, and plasmodia. N Engl J Med 2009; 361 (05) 526-528
  • 61 Gramaglia I, Velez J, Combes V, Grau GE, Wree M, van der Heyde HC. Platelets activate a pathogenic response to blood-stage Plasmodium infection but not a protective immune response. Blood 2017; 129 (12) 1669-1679
  • 62 Simmons CP, Farrar JJ, Nguyen V, Wills B. Dengue. N Engl J Med 2012; 366 (15) 1423-1432
  • 63 Simon AY, Sutherland MR, Pryzdial EL. Dengue virus binding and replication by platelets. Blood 2015; 126 (03) 378-385
  • 64 Ojha A, Nandi D, Batra H. , et al. Platelet activation determines the severity of thrombocytopenia in dengue infection. Sci Rep 2017; 7: 41697
  • 65 Hottz ED, Lopes JF, Freitas C. , et al. Platelets mediate increased endothelium permeability in dengue through NLRP3-inflammasome activation. Blood 2013; 122 (20) 3405-3414
  • 66 Sy RW, Chawantanpipat C, Richmond DR, Kritharides L. Thrombocytopenia and mortality in infective endocarditis. J Am Coll Cardiol 2008; 51 (18) 1824-1825
  • 67 Kupferwasser LI, Yeaman MR, Shapiro SM, Nast CC, Bayer AS. In vitro susceptibility to thrombin-induced platelet microbicidal protein is associated with reduced disease progression and complication rates in experimental Staphylococcus aureus endocarditis: microbiological, histopathologic, and echocardiographic analyses. Circulation 2002; 105 (06) 746-752
  • 68 Jung C-J, Yeh C-Y, Shun C-T. , et al. Platelets enhance biofilm formation and resistance of endocarditis-inducing streptococci on the injured heart valve. J Infect Dis 2012; 205 (07) 1066-1075
  • 69 Levi M, Ten Cate H. Disseminated intravascular coagulation. N Engl J Med 1999; 341 (08) 586-592
  • 70 McDonald B, Davis RP, Kim S-J. , et al. Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice. Blood 2017; 129 (10) 1357-1367
  • 71 Palabrica T, Lobb R, Furie BC. , et al. Leukocyte accumulation promoting fibrin deposition is mediated in vivo by P-selectin on adherent platelets. Nature 1992; 359 (6398): 848-851
  • 72 Diacovo TG, Roth SJ, Buccola JM, Bainton DF, Springer TA. Neutrophil rolling, arrest, and transmigration across activated, surface-adherent platelets via sequential action of P-selectin and the beta 2-integrin CD11b/CD18. Blood 1996; 88 (01) 146-157
  • 73 Passacquale G, Vamadevan P, Pereira L, Hamid C, Corrigall V, Ferro A. Monocyte-platelet interaction induces a pro-inflammatory phenotype in circulating monocytes. PLoS One 2011; 6 (10) e25595
  • 74 Etulain J, Martinod K, Wong SL, Cifuni SM, Schattner M, Wagner DD. P-selectin promotes neutrophil extracellular trap formation in mice. Blood 2015; 126 (02) 242-246
  • 75 von Hundelshausen P, Koenen RR, Sack M. , et al. Heterophilic interactions of platelet factor 4 and RANTES promote monocyte arrest on endothelium. Blood 2005; 105 (03) 924-930
  • 76 Zamora C, Cantó E, Nieto JC. , et al. Binding of platelets to lymphocytes: a potential anti-inflammatory therapy in rheumatoid arthritis. J Immunol 2017; 198 (08) 3099-3108
  • 77 Chen GY, Nuñez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 2010; 10 (12) 826-837
  • 78 Eltzschig HK, Eckle T. Ischemia and reperfusion--from mechanism to translation. Nat Med 2011; 17 (11) 1391-1401
  • 79 Gawaz M, Langer H, May AE. Platelets in inflammation and atherogenesis. J Clin Invest 2005; 115 (12) 3378-3384
  • 80 Jiang D, Liang J, Fan J. , et al. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat Med 2005; 11 (11) 1173-1179
  • 81 Shen H, Kreisel D, Goldstein DR. Processes of sterile inflammation. J Immunol 2013; 191 (06) 2857-2863
  • 82 Schaefer L. Complexity of danger: the diverse nature of damage-associated molecular patterns. J Biol Chem 2014; 289 (51) 35237-35245
  • 83 Chekeni FB, Elliott MR, Sandilos JK. , et al. Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature 2010; 467 (7317): 863-867
  • 84 Elliott MR, Chekeni FB, Trampont PC. , et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 2009; 461 (7261): 282-286
  • 85 Sáez PJ, Vargas P, Shoji KF, Harcha PA, Lennon-Duménil A-M, Sáez JC. ATP promotes the fast migration of dendritic cells through the activity of pannexin 1 channels and P2X7 receptors. Sci Signal 2017; 10 (506) 7107
  • 86 Iyer SS, Pulskens WP, Sadler JJ. , et al. Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc Natl Acad Sci U S A 2009; 106 (48) 20388-20393
  • 87 Cauwels A, Rogge E, Vandendriessche B, Shiva S, Brouckaert P. Extracellular ATP drives systemic inflammation, tissue damage and mortality. Cell Death Dis 2014; 5 (03) e1102
  • 88 Kono H, Chen C-J, Ontiveros F, Rock KL. Uric acid promotes an acute inflammatory response to sterile cell death in mice. J Clin Invest 2010; 120 (06) 1939-1949
  • 89 Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-κ B pathway. Int Immunol 2000; 12 (11) 1539-1546
  • 90 Millar DG, Garza KM, Odermatt B. , et al. Hsp70 promotes antigen-presenting cell function and converts T-cell tolerance to autoimmunity in vivo. Nat Med 2003; 9 (12) 1469-1476
  • 91 Fang H, Wu Y, Huang X. , et al. Toll-like receptor 4 (TLR4) is essential for Hsp70-like protein 1 (HSP70L1) to activate dendritic cells and induce Th1 response. J Biol Chem 2011; 286 (35) 30393-30400
  • 92 Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 2002; 418 (6894): 191-195
  • 93 Magna M, Pisetsky DS. The role of HMGB1 in the pathogenesis of inflammatory and autoimmune diseases. Mol Med 2014; 20 (01) 138-146
  • 94 Rovere-Querini P, Capobianco A, Scaffidi P. , et al. HMGB1 is an endogenous immune adjuvant released by necrotic cells. EMBO Rep 2004; 5 (08) 825-830
  • 95 Xu J, Zhang X, Monestier M, Esmon NL, Esmon CT. Extracellular histones are mediators of death through TLR2 and TLR4 in mouse fatal liver injury. J Immunol 2011; 187 (05) 2626-2631
  • 96 Kawai C, Kotani H, Miyao M. , et al. Circulating extracellular histones are clinically relevant mediators of multiple organ injury. Am J Pathol 2016; 186 (04) 829-843
  • 97 Tran TT, Groben P, Pisetsky DS. The release of DNA into the plasma of mice following hepatic cell death by apoptosis and necrosis. Biomarkers 2008; 13 (02) 184-200
  • 98 Ohto U, Shibata T, Tanji H. , et al. Structural basis of CpG and inhibitory DNA recognition by Toll-like receptor 9. Nature 2015; 520 (7549): 702-705
  • 99 Pisetsky DS. The origin and properties of extracellular DNA: from PAMP to DAMP. Clin Immunol 2012; 144 (01) 32-40
  • 100 Urbonaviciute V, Fürnrohr BG, Meister S. , et al. Induction of inflammatory and immune responses by HMGB1-nucleosome complexes: implications for the pathogenesis of SLE. J Exp Med 2008; 205 (13) 3007-3018
  • 101 Piccinini AM, Midwood KS. DAMPening inflammation by modulating TLR signalling. Mediators Inflamm 2010; 2010: xx
  • 102 Fritz JH, Ferrero RL, Philpott DJ, Girardin SE. Nod-like proteins in immunity, inflammation and disease. Nat Immunol 2006; 7 (12) 1250-1257
  • 103 Hornung V, Ablasser A, Charrel-Dennis M. , et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 2009; 458 (7237): 514-518
  • 104 Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol 2014; 5: 461
  • 105 He C, Lai P, Wang J. , et al. TLR2/4 deficiency prevents oxygen-induced vascular degeneration and promotes revascularization by downregulating IL-17 in the retina. Sci Rep 2016; 6 (01) 27739
  • 106 Mayer C, Adam M, Glashauser L. , et al. Sterile inflammation as a factor in human male infertility: involvement of Toll like receptor 2, biglycan and peritubular cells. Sci Rep 2016; 6 (01) 37128
  • 107 Neumann K, Castiñeiras-Vilariño M, Höckendorf U. , et al. Clec12a is an inhibitory receptor for uric acid crystals that regulates inflammation in response to cell death. Immunity 2014; 40 (03) 389-399
  • 108 Ahrens S, Zelenay S, Sancho D. , et al. F-actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells. Immunity 2012; 36 (04) 635-645
  • 109 Yamasaki S, Ishikawa E, Sakuma M, Hara H, Ogata K, Saito T. Mincle is an ITAM-coupled activating receptor that senses damaged cells. Nat Immunol 2008; 9 (10) 1179-1188
  • 110 Kokkola R, Andersson A, Mullins G. , et al. RAGE is the major receptor for the proinflammatory activity of HMGB1 in rodent macrophages. Scand J Immunol 2005; 61 (01) 1-9
  • 111 Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ. HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol 2010; 28 (01) 367-388
  • 112 Cataldegirmen G, Zeng S, Feirt N. , et al. RAGE limits regeneration after massive liver injury by coordinated suppression of TNF-alpha and NF-kappaB. J Exp Med 2005; 201 (03) 473-484
  • 113 Bucciarelli LG, Kaneko M, Ananthakrishnan R. , et al. Receptor for advanced-glycation end products: key modulator of myocardial ischemic injury. Circulation 2006; 113 (09) 1226-1234
  • 114 Bangert A, Andrassy M, Müller A-M. , et al. Critical role of RAGE and HMGB1 in inflammatory heart disease. Proc Natl Acad Sci U S A 2016; 113 (02) E155-E164
  • 115 Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol Cell 2002; 10 (02) 417-426
  • 116 Willingham SB, Allen IC, Bergstralh DT. , et al. NLRP3 (NALP3, Cryopyrin) facilitates in vivo caspase-1 activation, necrosis, and HMGB1 release via inflammasome-dependent and -independent pathways. J Immunol 2009; 183 (03) 2008-2015
  • 117 Duewell P, Kono H, Rayner KJ. , et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 2010; 464 (7293): 1357-1361
  • 118 Denes A, Coutts G, Lénárt N. , et al. AIM2 and NLRC4 inflammasomes contribute with ASC to acute brain injury independently of NLRP3. Proc Natl Acad Sci U S A 2015; 112 (13) 4050-4055
  • 119 Vogel S, Thein SL. Platelets at the crossroads of thrombosis, inflammation and haemolysis. Br J Haematol 2018; 180 (05) 761-767
  • 120 Cognasse F, Hamzeh H, Chavarin P, Acquart S, Genin C, Garraud O. Evidence of Toll-like receptor molecules on human platelets. Immunol Cell Biol 2005; 83 (02) 196-198
  • 121 Andonegui G, Kerfoot SM, McNagny K, Ebbert KV, Patel KD, Kubes P. Platelets express functional Toll-like receptor-4. Blood 2005; 106 (07) 2417-2423
  • 122 Yu L-X, Yan L, Yang W. , et al. Platelets promote tumour metastasis via interaction between TLR4 and tumour cell-released high-mobility group box1 protein. Nat Commun 2014; 5: 5256
  • 123 Chi W, Chen H, Li F, Zhu Y, Yin W, Zhuo Y. HMGB1 promotes the activation of NLRP3 and caspase-8 inflammasomes via NF-κB pathway in acute glaucoma. J Neuroinflammation 2015; 12 (01) 137
  • 124 Allam O, Samarani S, Jenabian M-A. , et al. Differential synthesis and release of IL-18 and IL-18 Binding Protein from human platelets and their implications for HIV infection. Cytokine 2017; 90: 144-154
  • 125 Maugeri N, Franchini S, Campana L. , et al. Circulating platelets as a source of the damage-associated molecular pattern HMGB1 in patients with systemic sclerosis. Autoimmunity 2012; 45 (08) 584-587
  • 126 Rouhiainen A, Imai S, Rauvala H, Parkkinen J. Occurrence of amphoterin (HMG1) as an endogenous protein of human platelets that is exported to the cell surface upon platelet activation. Thromb Haemost 2000; 84 (06) 1087-1094
  • 127 Venereau E, Casalgrandi M, Schiraldi M. , et al. Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release. J Exp Med 2012; 209 (09) 1519-1528
  • 128 Vogel S, Rath D, Borst O. , et al. Platelet-derived high-mobility group box 1 promotes recruitment and suppresses apoptosis of monocytes. Biochem Biophys Res Commun 2016; 478 (01) 143-148
  • 129 Maugeri N, Campana L, Gavina M. , et al. Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. J Thromb Haemost 2014; 12 (12) 2074-2088
  • 130 Yang X, Wang H, Zhang M, Liu J, Lv B, Chen F. HMGB1: a novel protein that induced platelets active and aggregation via Toll-like receptor-4, NF-κB and cGMP dependent mechanisms. Diagn Pathol 2015; 10 (01) 134
  • 131 Ahrens I, Chen Y-C, Topcic D. , et al. HMGB1 binds to activated platelets via the receptor for advanced glycation end products and is present in platelet rich human coronary artery thrombi. Thromb Haemost 2015; 114 (05) 994-1003
  • 132 Vogel S, Bodenstein R, Chen Q. , et al. Platelet-derived HMGB1 is a critical mediator of thrombosis. J Clin Invest 2015; 125 (12) 4638-4654
  • 133 Stark K, Philippi V, Stockhausen S. , et al. Disulfide HMGB1 derived from platelets coordinates venous thrombosis in mice. Blood 2016; 128 (20) 2435-2449
  • 134 Murthy P, Durco F, Miller-Ocuin JL. , et al. The NLRP3 inflammasome and bruton's tyrosine kinase in platelets co-regulate platelet activation, aggregation, and in vitro thrombus formation. Biochem Biophys Res Commun 2017; 483 (01) 230-236
  • 135 Dyer MR, Chen Q, Haldeman S. , et al. Deep vein thrombosis in mice is regulated by platelet HMGB1 through release of neutrophil-extracellular traps and DNA. Sci Rep 2018; 8 (01) 2068
  • 136 Mardente S, Mari E, Massimi I. , et al. From human megakaryocytes to platelets: effects of aspirin on high-mobility group box 1/receptor for advanced glycation end products axis. Front Immunol 2018; 8: 1946
  • 137 Bailey SE, Ukoumunne OC, Shephard EA, Hamilton W. Clinical relevance of thrombocytosis in primary care: a prospective cohort study of cancer incidence using English electronic medical records and cancer registry data. Br J Gen Pract 2017; 67 (659) e405-e413
  • 138 Jain S, Harris J, Ware J. Platelets: linking hemostasis and cancer. Arterioscler Thromb Vasc Biol 2010; 30 (12) 2362-2367
  • 139 Khorana AA, Ahrendt SA, Ryan CK. , et al. Tissue factor expression, angiogenesis, and thrombosis in pancreatic cancer. Clin Cancer Res 2007; 13 (10) 2870-2875
  • 140 Cho MS, Noh K, Haemmerle M. , et al. Role of ADP receptors on platelets in the growth of ovarian cancer. Blood 2017; 130 (10) 1235-1242
  • 141 Haemmerle M, Bottsford-Miller J, Pradeep S. , et al. FAK regulates platelet extravasation and tumor growth after antiangiogenic therapy withdrawal. J Clin Invest 2016; 126 (05) 1885-1896
  • 142 Sakai H, Suzuki T, Takahashi Y. , et al. Upregulation of thromboxane synthase in human colorectal carcinoma and the cancer cell proliferation by thromboxane A2. FEBS Lett 2006; 580 (14) 3368-3374
  • 143 Karpatkin S, Pearlstein E, Ambrogio C, Coller BS. Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo. J Clin Invest 1988; 81 (04) 1012-1019
  • 144 Weber MR, Zuka M, Lorger M. , et al. Activated tumor cell integrin αvβ3 cooperates with platelets to promote extravasation and metastasis from the blood stream. Thromb Res 2016; 140 (Suppl. 01) S27-S36
  • 145 Palumbo JS, Talmage KE, Massari JV. , et al. Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood 2005; 105 (01) 178-185
  • 146 Rachidi S, Metelli A, Riesenberg B. , et al. Platelets subvert T cell immunity against cancer via GARP-TGFβ axis. Sci Immunol 2017; 2 (11) 7911
  • 147 Battinelli EM, Markens BA, Italiano Jr JE. Release of angiogenesis regulatory proteins from platelet alpha granules: modulation of physiologic and pathologic angiogenesis. Blood 2011; 118 (05) 1359-1369
  • 148 Varon D, Shai E. Platelets and their microparticles as key players in pathophysiological responses. J Thromb Haemost 2015; 13 (Suppl. 01) S40-S46
  • 149 Zubairova LD, Nabiullina RM, Nagaswami C. , et al. Circulating microparticles alter formation, structure, and properties of fibrin clots. Sci Rep 2015; 5 (01) 17611
  • 150 Castaman G, Yu-Feng L, Rodeghiero F. A bleeding disorder characterised by isolated deficiency of platelet microvesicle generation. Lancet 1996; 347 (9002): 700-701
  • 151 Ponomareva AA, Nevzorova TA, Mordakhanova ER. , et al. Intracellular origin and ultrastructure of platelet-derived microparticles. J Thromb Haemost 2017; 15 (08) 1655-1667
  • 152 Boudreau LH, Duchez A-C, Cloutier N. , et al. Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation. Blood 2014; 124 (14) 2173-2183
  • 153 Boilard E, Nigrovic PA, Larabee K. , et al. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 2010; 327 (5965): 580-583
  • 154 Kim HK, Song KS, Park YS. , et al. Elevated levels of circulating platelet microparticles, VEGF, IL-6 and RANTES in patients with gastric cancer: possible role of a metastasis predictor. Eur J Cancer 2003; 39 (02) 184-191
  • 155 Michael JV, Wurtzel JGT, Mao GF. , et al. Platelet microparticles infiltrating solid tumors transfer miRNAs that suppress tumor growth. Blood 2017; 130 (05) 567-580
  • 156 Kim HK, Song KS, Chung J-H, Lee KR, Lee S-N. Platelet microparticles induce angiogenesis in vitro. Br J Haematol 2004; 124 (03) 376-384
  • 157 Brill A, Dashevsky O, Rivo J, Gozal Y, Varon D. Platelet-derived microparticles induce angiogenesis and stimulate post-ischemic revascularization. Cardiovasc Res 2005; 67 (01) 30-38
  • 158 Sarma JV, Ward PA. The complement system. Cell Tissue Res 2011; 343 (01) 227-235
  • 159 Patzelt J, Verschoor A, Langer HF. Platelets and the complement cascade in atherosclerosis. Front Physiol 2015; 6: 49
  • 160 Mathern DR, Heeger PS. Molecules great and small: the complement system. Clin J Am Soc Nephrol 2015; 10 (09) 1636-1650
  • 161 Nording H, Langer HF. Complement links platelets to innate immunity. Semin Immunol 2018; 37: 43-52
  • 162 Carroll MC. The complement system in regulation of adaptive immunity. Nat Immunol 2004; 5 (10) 981-986
  • 163 Del Conde I, Crúz MA, Zhang H, López JA, Afshar-Kharghan V. Platelet activation leads to activation and propagation of the complement system. J Exp Med 2005; 201 (06) 871-879
  • 164 Saggu G, Cortes C, Emch HN, Ramirez G, Worth RG, Ferreira VP. Identification of a novel mode of complement activation on stimulated platelets mediated by properdin and C3(H2O). J Immunol 2013; 190 (12) 6457-6467
  • 165 Hamad OA, Ekdahl KN, Nilsson PH. , et al. Complement activation triggered by chondroitin sulfate released by thrombin receptor-activated platelets. J Thromb Haemost 2008; 6 (08) 1413-1421
  • 166 Bevers EM, Comfurius P, Zwaal RF. Changes in membrane phospholipid distribution during platelet activation. Biochim Biophys Acta 1983; 736 (01) 57-66
  • 167 Kovacsovics T, Tschopp J, Kress A, Isliker H. Antibody-independent activation of C1, the first component of complement, by cardiolipin. J Immunol 1985; 135 (04) 2695-2700
  • 168 Païdassi H, Tacnet-Delorme P, Garlatti V. , et al. C1q binds phosphatidylserine and likely acts as a multiligand-bridging molecule in apoptotic cell recognition. J Immunol 2008; 180 (04) 2329-2338
  • 169 Schmaier AH, Amenta S, Xiong T, Heda GD, Gewirtz AM. Expression of platelet C1 inhibitor. Blood 1993; 82 (02) 465-474
  • 170 Shanmugavelayudam SK, Rubenstein DA, Yin W. Effects of physiologically relevant dynamic shear stress on platelet complement activation. Platelets 2011; 22 (08) 602-610
  • 171 Gushiken FC, Han H, Li J, Rumbaut RE, Afshar-Kharghan V. Abnormal platelet function in C3-deficient mice. J Thromb Haemost 2009; 7 (05) 865-870
  • 172 Subramaniam S, Jurk K, Hobohm L. , et al. Distinct contributions of complement factors to platelet activation and fibrin formation in venous thrombus development. Blood 2017; 129 (16) 2291-2302
  • 173 Hamad OA, Nilsson PH, Wouters D, Lambris JD, Ekdahl KN, Nilsson B. Complement component C3 binds to activated normal platelets without preceding proteolytic activation and promotes binding to complement receptor 1. J Immunol 2010; 184 (05) 2686-2692
  • 174 Peerschke EI, Reid KB, Ghebrehiwet B. Platelet activation by C1q results in the induction of alpha IIb/beta 3 integrins (GPIIb-IIIa) and the expression of P-selectin and procoagulant activity. J Exp Med 1993; 178 (02) 579-587
  • 175 Peerschke EI, Ghebrehiwet B. Platelet receptors for the complement component C1q: implications for hemostasis and thrombosis. Immunobiology 1998; 199 (02) 239-249
  • 176 Skoglund C, Wetterö J, Tengvall P, Bengtsson T. C1q induces a rapid up-regulation of P-selectin and modulates collagen- and collagen-related peptide-triggered activation in human platelets. Immunobiology 2010; 215 (12) 987-995
  • 177 Bhatia VK, Yun S, Leung V. , et al. Complement C1q reduces early atherosclerosis in low-density lipoprotein receptor-deficient mice. Am J Pathol 2007; 170 (01) 416-426
  • 178 Fukuoka Y, Hugli TE. Demonstration of a specific C3a receptor on guinea pig platelets. J Immunol 1988; 140 (10) 3496-3501
  • 179 Polley MJ, Nachman RL. Human platelet activation by C3a and C3a des-arg. J Exp Med 1983; 158 (02) 603-615
  • 180 Kretzschmar T, Kahl K, Rech K, Bautsch W, Köhl J, Bitter-Suermann D. Characterization of the C5a receptor on guinea pig platelets. Immunobiology 1991; 183 (05) 418-432
  • 181 Meuer S, Ecker U, Hadding U, Bitter-Suermann D. Platelet-serotonin release by C3a and C5a: two independent pathways of activation. J Immunol 1981; 126 (04) 1506-1509
  • 182 Persson L, Borén J, Robertson A-KL, Wallenius V, Hansson GK, Pekna M. Lack of complement factor C3, but not factor B, increases hyperlipidemia and atherosclerosis in apolipoprotein E-/- low-density lipoprotein receptor-/- mice. Arterioscler Thromb Vasc Biol 2004; 24 (06) 1062-1067
  • 183 Manthey HD, Thomas AC, Shiels IA. , et al. Complement C5a inhibition reduces atherosclerosis in ApoE-/- mice. FASEB J 2011; 25 (07) 2447-2455
  • 184 Patzelt J, Mueller KA, Breuning S. , et al. Expression of anaphylatoxin receptors on platelets in patients with coronary heart disease. Atherosclerosis 2015; 238 (02) 289-295
  • 185 Wang H, Ricklin D, Lambris JD. Complement-activation fragment C4a mediates effector functions by binding as untethered agonist to protease-activated receptors 1 and 4. Proc Natl Acad Sci U S A 2017; 114 (41) 10948-10953
  • 186 Verschoor A, Langer HF. Crosstalk between platelets and the complement system in immune protection and disease. Thromb Haemost 2013; 110 (05) 910-919
  • 187 Jokiranta TS. HUS and atypical HUS. Blood 2017; 129 (21) 2847-2856
  • 188 Hill A, Kelly RJ, Hillmen P. Thrombosis in paroxysmal nocturnal hemoglobinuria. Blood 2013; 121 (25) 4985-4996 , quiz 5105
  • 189 Lood C, Tydén H, Gullstrand B. , et al. Platelet activation and anti-phospholipid antibodies collaborate in the activation of the complement system on platelets in systemic lupus erythematosus. PLoS One 2014; 9 (06) e99386
  • 190 Kao AH, McBurney CA, Sattar A. , et al. Relation of platelet C4d with all-cause mortality and ischemic stroke in patients with systemic lupus erythematosus. Transl Stroke Res 2014; 5 (04) 510-518
  • 191 Tati R, Kristoffersson A-C, Ståhl A-L. , et al. Complement activation associated with ADAMTS13 deficiency in human and murine thrombotic microangiopathy. J Immunol 2013; 191 (05) 2184-2193
  • 192 Arbesu I, Bucsaiova M, Fischer MB, Mannhalter C. Platelet-borne complement proteins and their role in platelet-bacteria interactions. J Thromb Haemost 2016; 14 (11) 2241-2252
  • 193 Pietrzyk-Nivau A, Poirault-Chassac S, Gandrille S. , et al. Three-dimensional environment sustains hematopoietic stem cell differentiation into platelet-producing megakaryocytes. PLoS One 2015; 10 (08) e0136652
  • 194 Lundbäck P, Klevenvall L, Ottosson L. , et al. Anti HMGB1 treatment reduces inflammation in models of experimental autoimmunity. Ann Rheum Dis 2012; 71 (Suppl. 01) A79-A80
  • 195 Stähli BE, Tardif J-C, Carrier M. , et al. Effects of P-selectin antagonist inclacumab in patients undergoing coronary artery bypass graft surgery: SELECT-CABG trial. J Am Coll Cardiol 2016; 67 (03) 344-346