J Knee Surg 2019; 32(10): 972-978
DOI: 10.1055/s-0038-1672205
Original Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Onlay Reconstruction of the Posterior Cruciate Ligament: Biomechanical Comparison of Unicortical and Bicortical Tibial Fixation

João Bourbon de Albuquerque II
1   Departamento de Biomecanica, Medicina e Reabilitacao do Aparelho Locomotor, Universidade de Sao Paulo Faculdade de Medicina de Ribeirao Preto, Ribeirao Preto, Brazil
,
Ferris Pfeiffer
2   Department of Orthopaedic Surgery/Bioengineering, University of Missouri, Columbia, Missouri
,
James P. Stannard
3   Department of Orthopaedic Surgery, Missouri Orthopaedic Institute, University of Missouri Columbia, Columbia, Missouri
4   Thompson Laboratory for Regenerative Orthopaedics, Missouri Orthopaedic Institute, University of Missouri Columbia, Columbia, Missouri
,
James L. Cook
5   Department of Orthopaedic Surgery, University of Missouri Hospital, Columbia, Missouri
,
Mauricio Kfuri
1   Departamento de Biomecanica, Medicina e Reabilitacao do Aparelho Locomotor, Universidade de Sao Paulo Faculdade de Medicina de Ribeirao Preto, Ribeirao Preto, Brazil
6   Department of Orthopedic Surgery, University of Missouri Health Care, Columbia, Missouri
› Author Affiliations
Further Information

Publication History

25 March 2018

20 August 2018

Publication Date:
03 October 2018 (online)

Abstract

Posterior cruciate ligament (PCL) injuries are generally associated with high-energy trauma. There are many controversies regarding optimal surgical technique in regard to graft selection and fixation methods. The recently described onlay technique allows for direct fixation of a hamstring autograft to the posterior aspect of the tibia with cancellous screw and spiked washer, while protecting the neurovascular structures and avoiding the so-called “killer turn.” The objective of this study was to compare immediate postimplantation biomechanics of unicortical versus bicortical tibial fixation of onlay PCL grafts. Eight knees were randomly assigned to one of two onlay PCL techniques (n = 4 knees/technique), performed by a single experienced surgeon. Testing consisted of a posterior-directed force at four knee flexion angles, 10, 30, 60, and 90 degrees, to measure load to 5 mm of posterior displacement, maximum displacement (at 100 N load), and stiffness. For statistical analyses, data for each knee were normalized to the native PCL-intact knee and were then grouped into unicortical or bicortical groups accordingly. Data for load to 5 mm (strength), displacement at 100 N, and stiffness were compared among PCL-intact, PCL-deficient, unicortical fixation, and bicortical fixation categories using one-way analysis of variance to assess for statistically significant (p < 0.05) differences. When compared with PCL-deficient knees, both fixation techniques had less laxity. When compared with PCL-intact knees, unicortical had more laxity at all angles, and bicortical had more laxity only at 90 degrees (p < 0.001). For relative graft strength, intact knees required significantly higher loads than both treatment groups. Bicortical, however, outperformed unicortical at all angles (p < 0.001) for relative strength. Regarding stiffness, there were no significant differences between unicortical and bicortical, and both were superior to PCL-deficient and inferior to PCL-intact knees. Based on cadaveric biomechanical testing, none of the reconstructed PCL knees was able to replicate the intact native PCL, but both techniques were superior to PCL-deficient knees. The bicortical tibial fixation technique appears to have biomechanical advantages when opting for onlay PCL reconstruction.

 
  • References

  • 1 Morelli V, Bright C, Fields A. Ligamentous injuries of the knee: anterior cruciate, medial collateral, posterior cruciate, and posterolateral corner injuries. Prim Care 2013; 40 (02) 335-356
  • 2 Owesen C, Sandven-Thrane S, Lind M, Forssblad M, Granan L-P, Årøen A. Epidemiology of surgically treated posterior cruciate ligament injuries in Scandinavia. Knee Surg Sports Traumatol Arthrosc 2017; 25 (08) 2384-2391
  • 3 LaPrade CM, Civitarese DM, Rasmussen MT, LaPrade RF. Emerging updates on the posterior cruciate ligament: a review of the current literature. Am J Sports Med 2015; 43 (12) 3077-3092
  • 4 Fanelli GC, Beck JD, Edson CJ. Current concepts review: the posterior cruciate ligament. J Knee Surg 2010; 23 (02) 61-72
  • 5 Lopez-Vidriero E, Simon DA, Johnson DH. Initial evaluation of posterior cruciate ligament injuries: history, physical examination, imaging studies, surgical and nonsurgical indications. Sports Med Arthrosc Rev 2010; 18 (04) 230-237
  • 6 Watsend AM, Osestad TM, Jakobsen RB, Engebretsen L. Clinical studies on posterior cruciate ligament tears have weak design. Knee Surg Sports Traumatol Arthrosc 2009; 17 (02) 140-149
  • 7 Milles JL, Nuelle CW, Pfeiffer F. , et al. Biomechanical Comparison: Single-Bundle versus Double-Bundle Posterior Cruciate Ligament Reconstruction Techniques. J Knee Surg 2017; 30 (04) 347-351
  • 8 Wang D, Berger N, Cohen JR, Lord EL, Wang JC, Hame SL. Surgical treatment of posterior cruciate ligament insufficiency in the United States. Orthopedics 2015; 38 (04) e281-e286
  • 9 Petrigliano FA, McAllister DR. Isolated posterior cruciate ligament injuries of the knee. Sports Med Arthrosc Rev 2006; 14 (04) 206-212
  • 10 Ahn JH, Bae JH, Lee YS, Choi K, Bae TS, Wang JH. An anatomical and biomechanical comparison of anteromedial and anterolateral approaches for tibial tunnel of posterior cruciate ligament reconstruction: evaluation of the widening effect of the anterolateral approach. Am J Sports Med 2009; 37 (09) 1777-1783
  • 11 Lee DY, Kim DH, Park JS. , et al. Systematic review of cadaveric studies on anatomic posterior cruciate ligament reconstruction: the landmarks in anatomic posterior cruciate ligament reconstruction. Knee Surg Relat Res 2014; 26 (04) 191-198
  • 12 Nuelle CW, Milles JL, Pfeiffer FM. , et al. Biomechanical comparison of five posterior cruciate ligament reconstruction techniques. J Knee Surg 2017; 30 (06) 523-531
  • 13 Ahn S, Lee YS, Song YD, Chang CB, Kang SB, Choi YS. Does surgical reconstruction produce better stability than conservative treatment in the isolated PCL injuries?. Arch Orthop Trauma Surg 2016; 136 (06) 811-819
  • 14 Li Y, Li J, Wang J, Gao S, Zhang Y. Comparison of single-bundle and double-bundle isolated posterior cruciate ligament reconstruction with allograft: a prospective, randomized study. Arthroscopy 2014; 30 (06) 695-700
  • 15 Wijdicks CA, Kennedy NI, Goldsmith MT. , et al. Kinematic analysis of the posterior cruciate ligament, part 2: a comparison of anatomic single- versus double-bundle reconstruction. Am J Sports Med 2013; 41 (12) 2839-2848
  • 16 Tompkins M, Keller TC, Milewski MD. , et al. Transtibial tunnel placement in posterior cruciate ligament reconstruction: how it relates to the anatomic footprint. Orthop J Sports Med 2014; 2 (02) 2325967114523384
  • 17 LaPrade RF, Moulton SG, Nitri M, Mueller W, Engebretsen L. Clinically relevant anatomy and what anatomic reconstruction means. Knee Surg Sports Traumatol Arthrosc 2015; 23 (10) 2950-2959
  • 18 Anderson CJ, Ziegler CG, Wijdicks CA, Engebretsen L, LaPrade RF. Arthroscopically pertinent anatomy of the anterolateral and posteromedial bundles of the posterior cruciate ligament. J Bone Joint Surg Am 2012; 94 (21) 1936-1945
  • 19 Salim R, Fogagnolo F, Kfuri Jr M. A new simplified onlay technique for posterior cruciate ligament reconstruction. J Knee Surg 2014; 27 (04) 289-293
  • 20 Salim R, Nascimento FMD, Ferreira AM, Oliveira LFL, Fogagnolo F, Kfuri M. Tibial onlay posterior cruciate ligament reconstruction: surgical technique and results. J Knee Surg 2018; 31 (03) 284-290
  • 21 Covey DC, Sapega AA, Riffenburgh RH. The effects of sequential sectioning of defined posterior cruciate ligament fiber regions on translational knee motion. Am J Sports Med 2008; 36 (03) 480-486
  • 22 von Eisenhart-Rothe R, Lenze U, Hinterwimmer S. , et al. Tibiofemoral and patellofemoral joint 3D-kinematics in patients with posterior cruciate ligament deficiency compared to healthy volunteers. BMC Musculoskelet Disord 2012; 13: 231-238
  • 23 Gao SG, Jiang W, Lei GH, Xu M, Yu F, Li KH. Effect of posterior cruciate ligament rupture on biomechanical features of the medial femoral condyle. Orthop Surg 2011; 3 (03) 205-210
  • 24 Gao SG, Zhang C, Zhao RB. , et al. Effect of partial and complete posterior cruciate ligament transection on medial meniscus: a biomechanical evaluation in a cadaveric model. Indian J Orthop 2013; 47 (05) 493-499
  • 25 Goyal K, Tashman S, Wang JH, Li K, Zhang X, Harner C. In vivo analysis of the isolated posterior cruciate ligament-deficient knee during functional activities. Am J Sports Med 2012; 40 (04) 777-785
  • 26 Kennedy NI, Wijdicks CA, Goldsmith MT. , et al. Kinematic analysis of the posterior cruciate ligament, part 1: the individual and collective function of the anterolateral and posteromedial bundles. Am J Sports Med 2013; 41 (12) 2828-2838
  • 27 Matsui Y, Kadoya Y, Horibe S. The intact posterior cruciate ligament not only controls posterior displacement but also maintains the flexion gap. Clin Orthop Relat Res 2013; 471 (04) 1299-1304
  • 28 Zhao JX, Zhang LH, Mao Z. , et al. Outcome of posterior cruciate ligament reconstruction using the single- versus double bundle technique: a meta-analysis. J Int Med Res 2015; 43 (02) 149-160
  • 29 Bergfeld JA, Graham SM, Parker RD, Valdevit AD, Kambic HE. A biomechanical comparison of posterior cruciate ligament reconstructions using single- and double-bundle tibial inlay techniques. Am J Sports Med 2005; 33 (07) 976-981
  • 30 Qi YS, Wang HJ, Wang SJ, Zhang ZZ, Huang AB, Yu JK. A systematic review of double-bundle versus single-bundle posterior cruciate ligament reconstruction. BMC Musculoskelet Disord 2016; 17 (01) 45
  • 31 Deie M, Adachi N, Nakamae A, Takazawa K, Ochi M. Evaluation of single-bundle versus double-bundle PCL reconstructions with more than 10-year follow-up. Sci World J 2015; 2015: 751465