CC BY-NC-ND 4.0 · J Neuroanaesth Crit Care 2018; 05(03): 141-149
DOI: 10.1055/s-0038-1673544
Review Article
Indian Society of Neuroanaesthesiology and Critical Care

Total Intravenous Anesthesia in Neurosurgery

Narmadhalakshmi Kannabiran
1   Department of Neuroanaesthesiology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India
Prasanna Udupi Bidkar
2   Division of Neuroanaesthesia, Department of Anaesthesiology and Critical Care, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India
› Author Affiliations
Further Information

Publication History

Received: 01 July 2018

Accepted after revision: 21 August 2018

Publication Date:
24 October 2018 (online)


In recent years, neurosurgical anesthesia has been rapidly evolving in the fields of pharmacotherapy and techniques to administer safe anesthesia. Intravenous (IV) anesthetic agents reduce both cerebral blood flow and intracranial pressure besides maintaining flow–metabolism coupling in contrast to inhalational agents. In neuroanesthesia, the technique and choice of drugs directly influence the outcome of the patients. The purpose of this review is to provide the updated information of total intravenous anesthesia (TIVA) in neuroanesthesia. Administration of TIVA using target-controlled infusion technique is emerging as a standard method to administer safe anesthesia in neurosurgical patients. The propofol–remifentanil combination has become very popular due to their favorable pharmacokinetic and pharmacodynamic properties for neurosurgery cases. Plasma-effect site concentration monitoring from target TCI devices together with electroencephalogram or bispectral index monitors allows easy titration of anesthetic agents to ensure adequate depth of anesthesia depending upon the nociceptive stimulus. TIVA is associated with smooth induction and rapid emergence with less postoperative nausea and vomiting.

  • References

  • 1 Magni G, Baisi F, La Rosa I. et al. No difference in emergence time and early cognitive function between sevoflurane-fentanyl and propofol-remifentanil in patients undergoing craniotomy for supratentorial intracranial surgery. J Neurosurg Anesthesiol 2005; 17 (03) 134-138
  • 2 Bastola P, Bhagat H, Wig J. Comparative evaluation of propofol, sevoflurane and desflurane for neuroanaesthesia: a prospective randomised study in patients undergoing elective supratentorial craniotomy. Indian J Anaesth 2015; 59 (05) 287-294
  • 3 Condon-Rall ME. A Brief History of Military Anesthesia: Anesthesia and Perioperative Care of the Combat Casualty. Washington, DC: The Borden Institute, Office of the Surgeon General, US Dept of the Army; 2000: 855-896
  • 4 Struys MMRF, Absalom AR, Shafer S. Intravenous drug delivery systems. In: Miller RD. ed. 8th ed.. Miller's Anesthesia. Philadelphia: Elsevier Inc.; 2015: 920
  • 5 Schifilliti D, Grasso G, Conti A, Fodale V. Anaesthetic-related neuroprotection: intravenous or inhalational agents?. CNS Drugs 2010; 24 (11) 893-907
  • 6 Sakabe T, Matsumoto M. Effects of anaesthetic agents and other drugs on cerebral blood flow, metabolism and intracranial pressure. In: Cottrell JE, Young WL. eds. 5th ed.. Cottrell and Young's Neuroanaesthesia. Philadelphia: Elsevier; 2010: 78-94
  • 7 Petersen KD, Landsfeldt U, Cold GE. et al. Intracranial pressure and cerebral hemodynamic in patients with cerebral tumors: a randomized prospective study of patients subjected to craniotomy in propofol-fentanyl, isoflurane-fentanyl, or sevoflurane-fentanyl anesthesia. Anesthesiology 2003; 98 (02) 329-336
  • 8 Hans P, Bonhomme V. Why we still use intravenous drugs as the basic regimen for neurosurgical anaesthesia. Curr Opin Anaesthesiol 2006; 19 (05) 498-503
  • 9 Deiner S. Highlights of anesthetic considerations for intraoperative neuromonitoring. Semin Cardiothorac Vasc Anesth 2010; 14 (01) 51-53
  • 10 Todd MM, Warner DS, Sokoll MD. et al. A prospective, comparative trial of three anesthetics for elective supratentorial craniotomy. Propofol/fentanyl, isoflurane/nitrous oxide, and fentanyl/nitrous oxide. Anesthesiology 1993; 78 (06) 1005-1020
  • 11 Prabhakar H, Singh GP, Mahajan C, Kapoor I, Kalaivani M, Anand V. Intravenous versus inhalational techniques for rapid emergence from anaesthesia in patients undergoing brain tumour surgery: a Cochrane systematic review. J Neuroanaesth Crit Care 2017; 4: 23-35
  • 12 Debailleul AM, Fichten A, Krivosic-Horber R. Target-controlled infusion with propofol for neuro-anesthesia [Article in French]. Ann Fr Anesth Reanim 2004; 23 (04) 375-382
  • 13 Zeiler FA, Teitelbaum J, West M, Gillman LM. The ketamine effect on ICP in traumatic brain injury. Neurocrit Care 2014; 21 (01) 163-173
  • 14 Wang X, Ding X, Tong Y. et al. Ketamine does not increase intracranial pressure compared with opioids: meta-analysis of randomized controlled trials. J Anesth 2014; 28 (06) 821-827
  • 15 Hassan WMNW, Nasir YM, Zaini RHM, Shukeri WFWM. Target-controlled infusion propofol versus sevoflurane anaesthesia for emergency traumatic brain surgery: comparison of the outcomes. Malays J Med Sci 2017; 24 (05) 73-82
  • 16 Qureshi H, Mithaiwala H, Ezell J, Maurtua M. Anesthetic management of traumatic brain injury. Clin Med Rev Case Rep 2017; 4: 159
  • 17 Total Intravenous Anesthesia Using a Target-Controlled Infusion–A Pocket Reference. 2nd ed.. College of Anesthesiologists, Academy of Medicine Malaysia; 2013
  • 18 Campbell L, Engbers FH, Kenny GN. Total intravenous anaesthesia. CPD Anaesthesia 2001; 3: 109-119
  • 19 Lamperi M, Ashiq F. TCI and TIVA in neurosurgery: considerations and techniques. In: Absalom AR, Maison KP. eds. Total Intravenous Anesthesia and Target Controlled Infusions. Gewerbestrasse: Springer International Publishing AG; 2017: 561-570
  • 20 Yuill G, Simpson M. An introduction to Intravenous anaesthesia. Br J Anaesth 2002; 2: 24-26
  • 21 Glen JB. The development of ‘Diprifusor’: a TCI system for propofol. Anaesthesia 1998; 53 (Suppl. 01) 13-21
  • 22 Yeganeh N, Roshani B, Yari M, Almasi A. Target-controlled infusion anesthesia with propofol and remifentanil compared with manually controlled infusion anesthesia in mastoidectomy surgeries. Middle East J Anaesthesiol 2010; 20 (06) 785-793
  • 23 Ozkose Z, Ercan B, Unal Y. et al. Inhalation versus total intravenous anesthesia for lumbar disc herniation: comparison of hemodynamic effects, recovery characteristics, and cost. J Neurosurg Anesthesiol 2001; 13 (04) 296-302
  • 24 Nimmo AF, Cook TM. Total intravenous anaesthesia. In: Pandit JJ, Cook TM. eds. 5th National Audit Project (NAP5). Accidental Awareness during General Anaesthesia in the United Kingdom and Ireland Report and Findings—Chapter 18. The Royal College of Anaesthetists and the Association of Anaesthetists of Great Britain and Ireland; 2014: 151-158
  • 25 Hans P, Bonhomme V, Born JD, Maertens de NoordhoudtA, Brichant JF, Dewandre PY. Target-controlled infusion of propofol and remifentanil combined with bispectral index monitoring for awake craniotomy. Anaesthesia 2000; 55 (03) 255-259
  • 26 Dahaba AA. Different conditions that could result in the bispectral index indicating an incorrect hypnotic state. Anesth Analg 2005; 101 (03) 765-773
  • 27 Ekman A, Lindholm ML, Lennmarken C, Sandin R. Reduction in the incidence of awareness using BIS monitoring. Acta Anaesthesiol Scand 2004; 48 (01) 20-26
  • 28 Myles PS, Leslie K, McNeil J, Forbes A, Chan MT. Bispectral index monitoring to prevent awareness during anaesthesia: the B-Aware randomised controlled trial. Lancet 2004; 363 9423 1757-1763
  • 29 Al-Rifai Z, Mulvey D. Principles of total intravenous anaesthesia: practical aspects of using total intravenous anaesthesia. BJA Educ 2016; 16: 276-280
  • 30 Ferreira DA, Nunes CS, Antunes L, Lobo F, Amorim P. Practical aspects of the use of target controlled infusion with remifentanil in neurosurgical patients: predicted cerebral concentrations at intubation, incision and extubation. Acta Anaesthesiol Belg 2006; 57 (03) 265-270
  • 31 Carney N, Totten AM, O'Reilly C. et al. Guidelines for the management of severe traumatic brain injury. 4th ed.. Neurosurgery; 2017. 80 6-15
  • 32 Murthy TVSP. Propofol in neurotrauma. Indian Journal of Neurotrauma 2008; 5: 41-44
  • 33 Hemmer LB, Zeeni C, Bendok BR. Koht AIntraoperative neurophysiological monitoring for intracranial aneurysm surgery. In: Koht A, Sloan TB, Toleiki JR S. eds. Monitoring the Nervous System for Anesthesiologists and Other Health Care Professionals. 2nd ed.. Gewerbestrasse, Cham, Switzerland Springer International Publishing AG; 2017: 353-366
  • 34 Lopez JR. Intraoperative neurophysiologic monitoring of cerebral aneurysm surgery and endovascular procedures. Clin Neurophysiol 2016; 127: e307
  • 35 Park JH, Hyun SJ. Intraoperative neurophysiological monitoring in spinal surgery. World J Clin Cases 2015; 3 (09) 765-773
  • 36 Kim SM, Kim SH, Seo DW, Lee KW. Intraoperative neurophysiologic monitoring: basic principles and recent update. J Korean Med Sci 2013; 28 (09) 1261-1269
  • 37 Wang AC, Than KD, Etame AB, La Marca F, Park P. Impact of anesthesia on transcranial electric motor evoked potential monitoring during spine surgery: a review of the literature. Neurosurg Focus 2009; 27 (04) E7
  • 38 Lo YL, Dan YF, Tan YE. et al. Intraoperative motor-evoked potential monitoring in scoliosis surgery: comparison of desflurane/nitrous oxide with propofol total intravenous anesthetic regimens. J Neurosurg Anesthesiol 2006; 18 (03) 211-214
  • 39 Clapcich AJ, Emerson RG, Roye Jr DP. et al. The effects of propofol, small-dose isoflurane, and nitrous oxide on cortical somatosensory evoked potential and bispectral index monitoring in adolescents undergoing spinal fusion. Anesth Analg 2004; 99 (05) 1334-1340
  • 40 Sloan TB, Toleikis JR, Toleikis SC, Koht A. Intraoperative neurophysiological monitoring during spine surgery with total intravenous anesthesia or balanced anesthesia with 3% desflurane. J Clin Monit Comput 2015; 29 (01) 77-85
  • 41 Konstantopoulos K, Makris A, Moustaka A, Karmaniolou I, Konstantopoulos G, Mela A. Sevoflurane versus propofol anesthesia in patients undergoing lumbar spondylodesis: a randomized trial. J Surg Res 2013; 179 (01) 72-77
  • 42 Hans P, Marechal H, Bonhomme V. Effect of propofol and sevoflurane on coughing in smokers and non-smokers awakening from general anaesthesia at the end of a cervical spine surgery. Br J Anaesth 2008; 101 (05) 731-737
  • 43 Casati A, Fanelli G, Casaletti E, Colnaghi E, Cedrati V, Torri G. Clinical assessment of target-controlled infusion of propofol during monitored anesthesia care. Can J Anaesth 1999; 46 (03) 235-239
  • 44 Ghisi D, Fanelli A, Tosi M, Nuzzi M, Fanelli G. Monitored anesthesia care. Minerva Anestesiol 2005; 71 (09) 533-538
  • 45 Candiotti KA, Bergese SD, Bokesch PM, Feldman MA, Wisemandle W, Bekker AY. MAC Study Group. Monitored anesthesia care with dexmedetomidine: a prospective, randomized, double-blind, multicenter trial. Anesth Analg 2010; 110 (01) 47-56
  • 46 Meyer FB, Bates LM, Goerss SJ. et al. Awake craniotomy for aggressive resection of primary gliomas located in eloquent brain. Mayo Clin Proc 2001; 76 (07) 677-687
  • 47 Blanshard HJ, Chung F, Manninen PH, Taylor MD, Bernstein M. Awake craniotomy for removal of intracranial tumor: considerations for early discharge. Anesth Analg 2001; 92 (01) 89-94
  • 48 Sinha PK, Koshy T, Gayatri P, Smitha V, Abraham M, Rathod RC. Anesthesia for awake craniotomy: a retrospective study. Neurol India 2007; 55 (04) 376-381
  • 49 Lobo F, Beiras A. Propofol and remifentanil effect-site concentrations estimated by pharmacokinetic simulation and bispectral index monitoring during craniotomy with intraoperative awakening for brain tumor resection. J Neurosurg Anesthesiol 2007; 19 (03) 183-189
  • 50 Ard Jr JL, Bekker AY, Doyle WK. Dexmedetomidine in awake craniotomy: a technical note. Surg Neurol 2005; 63 (02) 114-116 discussion 116–117
  • 51 Rozet I. Anesthesia for functional neurosurgery: the role of dexmedetomidine. Curr Opin Anaesthesiol 2008; 21 (05) 537-543
  • 52 Garavaglia MM, Das S, Cusimano MD. et al. Anesthetic approach to high-risk patients and prolonged awake craniotomy using dexmedetomidine and scalp block. J Neurosurg Anesthesiol 2014; 26 (03) 226-233
  • 53 Pereira LCM, Oliveira KM, L'Abbate GL, Sugai R, Ferreira JA, da Motta LA. Outcome of fully awake craniotomy for lesions near the eloquent cortex: analysis of a prospective surgical series of 79 supratentorial primary brain tumors with long follow-up. Acta Neurochir (Wien) 2009; 151 (10) 1215-1230
  • 54 Deras P, Moulinié G, Maldonado IL, Moritz-Gasser S, Duffau H, Bertram L. Intermittent general anesthesia with controlled ventilation for asleep-awake-asleep brain surgery: a prospective series of 140 gliomas in eloquent areas. Neurosurgery 2012; 71 (04) 764-771
  • 55 Nagashima M, Kunisawa T, Takahata O, Iwasaki H. [Dexmedetomidine infusion for sedation during awake intubation [ Article in Japanese]. Masui 2008; 57 (06) 731-734
  • 56 Bergese SD, Khabiri B, Roberts WD, Howie MB, McSweeney TD, Gerhardt MA. Dexmedetomidine for conscious sedation in difficult awake fiberoptic intubation cases. J Clin Anesth 2007; 19 (02) 141-144
  • 57 Mingo OH, Ashpole KJ, Irving CJ, Rucklidge MW. Remifentanil sedation for awake fibreoptic intubation with limited application of local anaesthetic in patients for elective head and neck surgery. Anaesthesia 2008; 63 (10) 1065-1069
  • 58 Sharan R, Mohan B, Kaur H, Bala A. Efficacy and safety of propofol versus midazolam in fiberoptic endotracheal intubation. Anesth Essays Res 2016; 10 (03) 437-445
  • 59 Zhang X, He W, Wu X, Zhou X, Huang W, Feng X. TCI remifentanil vs. TCI propofol for awake fiber-optic intubation with limited topical anesthesia. Int J Clin Pharmacol Ther 2012; 50 (01) 10-16
  • 60 Jackson DL, Proudfoot CW, Cann KF, Walsh T. A systematic review of the impact of sedation practice in the ICU on resource use, costs and patient safety. Crit Care 2010; 14 (02) R59
  • 61 Barr J, Fraser GL, Puntillo K. et al; American College of Critical Care Medicine. Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit. Crit Care Med 2013; 41 (01) 263-306
  • 62 Skoglund K, Enblad P, Marklund N. Monitoring and sedation differences in the management of severe head injury and subarachnoid hemorrhage among neurocritical care centers. J Neurosci Nurs 2013; 45 (06) 360-368
  • 63 Oddo M, Crippa IA, Mehta S. et al. Optimizing sedation in patients with acute brain injury. Crit Care 2016; 20 (01) 128
  • 64 Bratton SL, Chestnut RM, Ghajar J. et al; Brain Trauma Foundation; American Association of Neurological Surgeons; Congress of Neurological Surgeons; Joint Section on Neurotrauma and Critical Care, AANS/CNS. Guidelines for the management of severe traumatic brain injury. XI. Anesthetics, analgesics, and sedatives. J Neurotrauma 2007; 24 (Suppl. 01) S71-S76
  • 65 Purrucker JC, Renzland J, Uhlmann L. et al. Volatile sedation with sevoflurane in intensive care patients with acute stroke or subarachnoid haemorrhage using AnaConDa®: an observational study. Br J Anaesth 2015; 114 (06) 934-943
  • 66 Lubisch N, Roskos R, Berkenbosch JW. Dexmedetomidine for procedural sedation in children with autism and other behavior disorders. Pediatr Neurol 2009; 41 (02) 88-94
  • 67 Hsu YW, Cortinez LI, Robertson KM. et al. Dexmedetomidine pharmacodynamics: part I: crossover comparison of the respiratory effects of dexmedetomidine and remifentanil in healthy volunteers. Anesthesiology 2004; 101 (05) 1066-1076
  • 68 Kamibayashi T, Maze M. Clinical uses of alpha2-adrenergic agonists. Anesthesiology 2000; 93 (05) 1345-1349
  • 69 Hajat Z. Neuroradiology in neurotrauma. In: Prabhakar H, Mahajan C, Kapoor I. eds. Essentials of Anaesthesia for Neurotrauma. Boca Raton, Florida, United States: CRC Press, Taylor and Francis Group; 2018: 215-222
  • 70 Goettel N, Bharadwaj S, Venkatraghavan L, Mehta J, Bernstein M, Manninen PH. Dexmedetomidine vs propofol-remifentanil conscious sedation for awake craniotomy: a prospective randomized controlled trial. Br J Anaesth 2016; 116 (06) 811-821
  • 71 Smith R, Brown J. Midazolam for status epilepticus. Aust Prescr 2017; 40 (01) 23-25
  • 72 Power KN, Flaatten H, Gilhus NE, Engelsen BA. Propofol treatment in adult refractory status epilepticus. Mortality risk and outcome. Epilepsy Res 2011; 94 (01) (02) 53-60
  • 73 Koerner IP, Brambrink AM. Brain protection by anesthetic agents. Curr Opin Anaesthesiol 2006; 19 (05) 481-486
  • 74 Kawaguchi M, Furuya H, Patel PM. Neuroprotective effects of anesthetic agents. J Anesth 2005; 19 (02) 150-156
  • 75 Walder B, Tramèr MR, Seeck M. Seizure-like phenomena and propofol: a systematic review. Neurology 2002; 58 (09) 1327-1332
  • 76 Gupta A, Stierer T, Zuckerman R, Sakima N, Parker SD, Fleisher LA. Comparison of recovery profile after ambulatory anesthesia with propofol, isoflurane, sevoflurane and desflurane: a systematic review. Anesth Analg 2004; 98 (03) 632-641
  • 77 Wysowski DK, Pollock ML. Reports of death with use of propofol (Diprivan) for nonprocedural (long-term) sedation and literature review. Anesthesiology 2006; 105 (05) 1047-1051
  • 78 Flower O, Hellings S. Sedation in traumatic brain injury. Emerg Med Int 2012; 2012: 637171
  • 79 Grewal A. Dexmedetomidine: New avenues. J Anaesthesiol Clin Pharmacol 2011; 27 (03) 297-302
  • 80 Peng K, Wu S, Liu H, Ji F. Dexmedetomidine as an anesthetic adjuvant for intracranial procedures: meta-analysis of randomized controlled trials. J Clin Neurosci 2014; 21 (11) 1951-1958
  • 81 Wang X, Ji J, Fen L, Wang A. Effects of dexmedetomidine on cerebral blood flow in critically ill patients with or without traumatic brain injury: a prospective controlled trial. Brain Inj 2013; 27 (13) (14) 1617-1622
  • 82 Farag E, Kot M, Podolyak A. et al. The relative effects of dexmedetomidine and propofol on cerebral blood flow velocity and regional brain oxygenation: A randomised noninferiority trial. Eur J Anaesthesiol 2017; 34 (11) 732-739
  • 83 Carollo DS, Nossaman BD, Ramadhyani U. Dexmedetomidine: a review of clinical applications. Curr Opin Anaesthesiol 2008; 21 (04) 457-461
  • 84 Schregel W, Weyerer W, Cunitz G. Opioids, cerebral circulation and intracranial pressure [article in German]. Anaesthesist 1994; 43 (07) 421-430
  • 85 Balakrishnan G, Raudzens P, Samra SK. et al. A comparison of remifentanil and fentanyl in patients undergoing surgery for intracranial mass lesions. Anesth Analg 2000; 91 (01) 163-169
  • 86 Leone M, Rousseau S, Avidan M. et al. Target concentrations of remifentanil with propofol to blunt coughing during intubation, cuff inflation, and tracheal suctioning. Br J Anaesth 2004; 93 (05) 660-663
  • 87 Urwin SC, Menon DK. Comparative tolerability of sedative agents in head-injured adults. Drug Saf 2004; 27 (02) 107-133
  • 88 McNeil IA, Culbert B, Russell I. Comparison of intubating conditions following propofol and succinylcholine with propofol and remifentanil 2 micrograms kg-1 or 4 micrograms kg-1. Br J Anaesth 2000; 85 (04) 623-625