Hamostaseologie 2019; 39(02): 128-139
DOI: 10.1055/s-0038-1675614
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Role of Endothelial Cells in Acute and Chronic Thrombosis

Magdalena L. Bochenek
1   Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
2   Center for Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany
3   Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Partner Site Rhein Main, Mainz, Germany
4   Center for Translational Vascular Biology, University Medical Center Mainz, Mainz, Germany
,
Katrin Schäfer
2   Center for Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany
3   Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Partner Site Rhein Main, Mainz, Germany
4   Center for Translational Vascular Biology, University Medical Center Mainz, Mainz, Germany
› Author Affiliations
Further Information

Publication History

21 June 2018

28 September 2018

Publication Date:
08 January 2019 (online)

Abstract

Haemostasis encompasses a set of strictly regulated actions, such as vasoconstriction, platelet activation and blood coagulation. Endothelial cells play a crucial role in all of these processes and are an integral part of the vascular response to injury resulting in thrombus formation. Healthy endothelium expresses mediators to prevent platelet activation, including prostacyclin and nitric oxide, and to inhibit coagulation, such as thrombomodulin or RNase1. Upon activation, endothelial cells expose von Willebrand factor, integrins and other receptors to interact with activated platelets, erythrocytes and coagulation factors, respectively, resulting in blood clot formation. The endothelial cell response to cytokines and growth factors released from activated platelets and immune cells abundantly present in arterial and venous thrombi also plays an important role for thrombus resolution, whereas failure to completely resolve thrombi may initiate fibrotic remodelling and chronic vascular occlusion both in the arterial and venous tree. Therefore, endothelial cells are increasingly recognized as potential target to prevent thrombotic events and to accelerate thrombus resolution. Here, we discuss recent publications from our group in the context of other studies on the role of the endothelium during acute and chronic thrombotic events.

Zusammenfassung

Die Hämostase umfasst eine Reihe von streng regulierten Abläufen wie Vasokonstriktion, Thrombozytenaktivierung und Blutgerinnung. Endothelzellen spielen eine entscheidende Rolle in all diesen Prozessen und sind ein integraler Bestandteil der vaskulären Antwort auf Verletzungen, die zur Thrombusbildung führen. Gesundes Endothel exprimiert Mediatoren zur Verhinderung der Thrombozytenaktivierung einschließlich Prostacyclin und Stickoxid und zur Hemmung der Gerinnung, wie Thrombomodulin oder RNase1. Nach der Aktivierung exponieren Endothelzellen den von Willebrand-Faktor, Integrine und andere Rezeptoren, um mit aktivierten Thrombozyten, Erythrozyten bzw. Gerinnungsfaktoren zu interagieren, was zur Bildung von Blutgerinnseln führt. Die Endothelzellenantwort auf Cytokine und Wachstumsfaktoren, die von aktivierten Blutplättchen und Immunzellen in arteriellen und venösen Thromben freigesetzt werden, spielt ebenfalls eine wichtige Rolle bei der Thrombusauflösung, während eine unvollständige Auflösung von Thromben fibrotische Umbauprozesse und einen chronischen Gefäßverschluss sowohl im arteriellen als auch im venösen Bereich auslösen kann. Daher werden Endothelzellen zunehmend als potenzielles Ziel zur Vorbeugung thrombotischer Ereignisse und zur Beschleunigung der Thrombusauflösung erkannt. Hier diskutieren wir aktuelle Publikationen aus unserer Gruppe im Zusammenhang mit anderen Studien zur Rolle des Endothels bei akuten und chronischen thrombotischen Ereignissen.

Authors' Contribution

M.L.B. and K.S. wrote the manuscript and acquired funding. Both authors have read and approved the final manuscript.


 
  • References

  • 1 Colburn P, Buonassisi V. Anti-clotting activity of endothelial cell cultures and heparan sulfate proteoglycans. Biochem Biophys Res Commun 1982; 104 (01) 220-227
  • 2 Marcus AJ, Broekman MJ, Drosopoulos JH. , et al. The endothelial cell ecto-ADPase responsible for inhibition of platelet function is CD39. J Clin Invest 1997; 99 (06) 1351-1360
  • 3 Moncada S, Gryglewski R, Bunting S, Vane JR. An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 1976; 263 (5579): 663-665
  • 4 Mellion BT, Ignarro LJ, Ohlstein EH, Pontecorvo EG, Hyman AL, Kadowitz PJ. Evidence for the inhibitory role of guanosine 3′, 5′-monophosphate in ADP-induced human platelet aggregation in the presence of nitric oxide and related vasodilators. Blood 1981; 57 (05) 946-955
  • 5 Radomski MW, Palmer RM, Moncada S. Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet 1987; 2 (8567): 1057-1058
  • 6 Yau JW, Teoh H, Verma S. Endothelial cell control of thrombosis. BMC Cardiovasc Disord 2015; 15: 130
  • 7 Landré JB, Hewett PW, Olivot JM. , et al. Human endothelial cells selectively express large amounts of pancreatic-type ribonuclease (RNase 1). J Cell Biochem 2002; 86 (03) 540-552
  • 8 Gansler J, Preissner KT, Fischer S. Influence of proinflammatory stimuli on the expression of vascular ribonuclease 1 in endothelial cells. FASEB J 2014; 28 (02) 752-760
  • 9 Lollar P, Owen WG. Clearance of thrombin from circulation in rabbits by high-affinity binding sites on endothelium. Possible role in the inactivation of thrombin by antithrombin III. J Clin Invest 1980; 66 (06) 1222-1230
  • 10 Kannemeier C, Shibamiya A, Nakazawa F. , et al. Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation. Proc Natl Acad Sci U S A 2007; 104 (15) 6388-6393
  • 11 Nieuwdorp M, van Haeften TW, Gouverneur MC. , et al. Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo. Diabetes 2006; 55 (02) 480-486
  • 12 Van de Wouwer M, Collen D, Conway EM. Thrombomodulin-protein C-EPCR system: integrated to regulate coagulation and inflammation. Arterioscler Thromb Vasc Biol 2004; 24 (08) 1374-1383
  • 13 Loghmani H, Conway EM. Exploring traditional and nontraditional roles for thrombomodulin. Blood 2018; 132 (02) 148-158
  • 14 Moore KL, Esmon CT, Esmon NL. Tumor necrosis factor leads to the internalization and degradation of thrombomodulin from the surface of bovine aortic endothelial cells in culture. Blood 1989; 73 (01) 159-165
  • 15 Frydland M, Ostrowski SR, Møller JE. , et al. Plasma concentration of biomarkers reflecting endothelial cell- and glycocalyx damage are increased in patients with suspected ST-Elevation myocardial infarction complicated by cardiogenic shock. Shock 2018; 50 (05) 538-544
  • 16 Warn-Cramer BJ, Almus FE, Rapaport SI. Studies of the factor Xa-dependent inhibitor of factor VIIa/tissue factor (extrinsic pathway inhibitor) from cell supernates of cultured human umbilical vein endothelial cells. Thromb Haemost 1989; 61 (01) 101-105
  • 17 White TA, Johnson T, Zarzhevsky N. , et al. Endothelial-derived tissue factor pathway inhibitor regulates arterial thrombosis but is not required for development or hemostasis. Blood 2010; 116 (10) 1787-1794
  • 18 Figueras J, Monasterio J, Lidón RM, Sambola A, Garcia-Dorado D. Lower tissue factor inhibition in patients with ST segment elevation than in patients with non ST elevation acute myocardial infarction. Thromb Res 2012; 130 (03) 458-462
  • 19 Rossouw JE, Johnson KC, Pettinger M. , et al. Tissue factor pathway inhibitor, activated protein C resistance, and risk of ischemic stroke due to postmenopausal hormone therapy. Stroke 2012; 43 (04) 952-957
  • 20 Dahm A, Van Hylckama Vlieg A, Bendz B, Rosendaal F, Bertina RM, Sandset PM. Low levels of tissue factor pathway inhibitor (TFPI) increase the risk of venous thrombosis. Blood 2003; 101 (11) 4387-4392
  • 21 Aird WC. Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ Res 2007; 100 (02) 174-190
  • 22 Aird WC. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res 2007; 100 (02) 158-173
  • 23 Ishii H, Salem HH, Bell CE, Laposata EA, Majerus PW. Thrombomodulin, an endothelial anticoagulant protein, is absent from the human brain. Blood 1986; 67 (02) 362-365
  • 24 Laszik Z, Mitro A, Taylor Jr FB, Ferrell G, Esmon CT. Human protein C receptor is present primarily on endothelium of large blood vessels: implications for the control of the protein C pathway. Circulation 1997; 96 (10) 3633-3640
  • 25 Tandon NN, Kralisz U, Jamieson GA. Identification of glycoprotein IV (CD36) as a primary receptor for platelet-collagen adhesion. J Biol Chem 1989; 264 (13) 7576-7583
  • 26 Chi JT, Chang HY, Haraldsen G. , et al. Endothelial cell diversity revealed by global expression profiling. Proc Natl Acad Sci U S A 2003; 100 (19) 10623-10628
  • 27 Coughlin SR. Thrombin signalling and protease-activated receptors. Nature 2000; 407 (6801): 258-264
  • 28 O'Brien PJ, Prevost N, Molino M. , et al. Thrombin responses in human endothelial cells. Contributions from receptors other than PAR1 include the transactivation of PAR2 by thrombin-cleaved PAR1. J Biol Chem 2000; 275 (18) 13502-13509
  • 29 Camerer E, Huang W, Coughlin SR. Tissue factor- and factor X-dependent activation of protease-activated receptor 2 by factor VIIa. Proc Natl Acad Sci U S A 2000; 97 (10) 5255-5260
  • 30 Molino M, Woolkalis MJ, Reavey-Cantwell J. , et al. Endothelial cell thrombin receptors and PAR-2. Two protease-activated receptors located in a single cellular environment. J Biol Chem 1997; 272 (17) 11133-11141
  • 31 Storck J, Küsters B, Zimmermann ER. The tethered ligand receptor is the responsible receptor for the thrombin induced release of von Willebrand factor from endothelial cells (HUVEC). Thromb Res 1995; 77 (03) 249-258
  • 32 Alm AK, Norström E, Sundelin J, Nystedt S. Stimulation of proteinase activated receptor-2 causes endothelial cells to promote blood coagulation in vitro. Thromb Haemost 1999; 81 (06) 984-988
  • 33 Bouwens EA, Stavenuiter F, Mosnier LO. Mechanisms of anticoagulant and cytoprotective actions of the protein C pathway. J Thromb Haemost 2013; 11 (Suppl. 01) 242-253
  • 34 De Ceunynck K, Peters CG, Jain A. , et al. PAR1 agonists stimulate APC-like endothelial cytoprotection and confer resistance to thromboinflammatory injury. Proc Natl Acad Sci U S A 2018; 115 (05) E982-E991
  • 35 Brill A, Elinav H, Varon D. Differential role of platelet granular mediators in angiogenesis. Cardiovasc Res 2004; 63 (02) 226-235
  • 36 Arisato T, Hashiguchi T, Sarker KP. , et al. Highly accumulated platelet vascular endothelial growth factor in coagulant thrombotic region. J Thromb Haemost 2003; 1 (12) 2589-2593
  • 37 Waltham M, Burnand KG, Collins M, McGuinness CL, Singh I, Smith A. Vascular endothelial growth factor enhances venous thrombus recanalisation and organisation. Thromb Haemost 2003; 89 (01) 169-176
  • 38 Evans CE, Grover SP, Humphries J. , et al. Antiangiogenic therapy inhibits venous thrombus resolution. Arterioscler Thromb Vasc Biol 2014; 34 (03) 565-570
  • 39 Alias S, Redwan B, Panzenboeck A. , et al. Defective angiogenesis delays thrombus resolution: a potential pathogenetic mechanism underlying chronic thromboembolic pulmonary hypertension. Arterioscler Thromb Vasc Biol 2014; 34 (04) 810-819
  • 40 Campbell JH, Campbell GR. Endothelial cell influences on vascular smooth muscle phenotype. Annu Rev Physiol 1986; 48: 295-306
  • 41 Modarai B, Burnand KG, Humphries J, Waltham M, Smith A. The role of neovascularisation in the resolution of venous thrombus. Thromb Haemost 2005; 93 (05) 801-809
  • 42 Griese DP, Ehsan A, Melo LG. , et al. Isolation and transplantation of autologous circulating endothelial cells into denuded vessels and prosthetic grafts: implications for cell-based vascular therapy. Circulation 2003; 108 (21) 2710-2715
  • 43 Schroeter MR, Leifheit M, Sudholt P. , et al. Leptin enhances the recruitment of endothelial progenitor cells into neointimal lesions after vascular injury by promoting integrin-mediated adhesion. Circ Res 2008; 103 (05) 536-544
  • 44 Li WD, Li XQ. Endothelial progenitor cells accelerate the resolution of deep vein thrombosis. Vascul Pharmacol 2016; 83: 10-16
  • 45 Schütz E, Bochenek ML, Riehl DR. , et al. Absence of transforming growth factor beta 1 in murine platelets reduces neointima formation without affecting arterial thrombosis. Thromb Haemost 2017; 117 (09) 1782-1797
  • 46 Heimark RL, Twardzik DR, Schwartz SM. Inhibition of endothelial regeneration by type-beta transforming growth factor from platelets. Science 1986; 233 (4768): 1078-1080
  • 47 Cooley BC, Nevado J, Mellad J. , et al. TGF-β signaling mediates endothelial-to-mesenchymal transition (EndMT) during vein graft remodeling. Sci Transl Med 2014; 6 (227) 227ra34
  • 48 Jäger M, Hubert A, Gogiraju R, Bochenek ML, Münzel T, Schäfer K. Inducible knockdown of endothelial protein tyrosine phosphatase-1B promotes neointima formation in obese mice by enhancing endothelial senescence. Antioxid Redox Signal 2018 ;•••: [Epub ahead of print];. Doi: 10.1089/ars.2017.7169
  • 49 Kellermair J, Redwan B, Alias S. , et al. Platelet endothelial cell adhesion molecule 1 deficiency misguides venous thrombus resolution. Blood 2013; 122 (19) 3376-3384
  • 50 Kohno M, Yasunari K, Yokokawa K. , et al. Thrombin stimulates the production of immunoreactive endothelin-1 in cultured human umbilical vein endothelial cells. Metabolism 1990; 39 (10) 1003-1005
  • 51 Ruggeri ZM, Mendolicchio GL. Interaction of von Willebrand factor with platelets and the vessel wall. Hamostaseologie 2015; 35 (03) 211-224
  • 52 Brill A, Fuchs TA, Chauhan AK. , et al. von Willebrand factor-mediated platelet adhesion is critical for deep vein thrombosis in mouse models. Blood 2011; 117 (04) 1400-1407
  • 53 Turner N, Nolasco L, Tao Z, Dong JF, Moake J. Human endothelial cells synthesize and release ADAMTS-13. J Thromb Haemost 2006; 4 (06) 1396-1404
  • 54 Vomund AN, Majerus EM. ADAMTS13 bound to endothelial cells exhibits enhanced cleavage of von Willebrand factor. J Biol Chem 2009; 284 (45) 30925-30932
  • 55 Levy GG, Nichols WC, Lian EC. , et al. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature 2001; 413 (6855): 488-494
  • 56 Lämmle B, Kremer Hovinga JA, George JN. Acquired thrombotic thrombocytopenic purpura: ADAMTS13 activity, anti-ADAMTS13 autoantibodies and risk of recurrent disease. Haematologica 2008; 93 (02) 172-177
  • 57 Kaikita K, Soejima K, Matsukawa M, Nakagaki T, Ogawa H. Reduced von Willebrand factor-cleaving protease (ADAMTS13) activity in acute myocardial infarction. J Thromb Haemost 2006; 4 (11) 2490-2493
  • 58 Bongers TN, de Maat MP, van Goor ML. , et al. High von Willebrand factor levels increase the risk of first ischemic stroke: influence of ADAMTS13, inflammation, and genetic variability. Stroke 2006; 37 (11) 2672-2677
  • 59 Li Z, Nardi MA, Li YS. , et al. C-terminal ADAMTS-18 fragment induces oxidative platelet fragmentation, dissolves platelet aggregates, and protects against carotid artery occlusion and cerebral stroke. Blood 2009; 113 (24) 6051-6060
  • 60 Bevilacqua MP, Pober JS, Majeau GR, Cotran RS, Gimbrone Jr MA. Interleukin 1 (IL-1) induces biosynthesis and cell surface expression of procoagulant activity in human vascular endothelial cells. J Exp Med 1984; 160 (02) 618-623
  • 61 Mackman N. Role of tissue factor in hemostasis, thrombosis, and vascular development. Arterioscler Thromb Vasc Biol 2004; 24 (06) 1015-1022
  • 62 Lawson CA, Yan SD, Yan SF. , et al. Monocytes and tissue factor promote thrombosis in a murine model of oxygen deprivation. J Clin Invest 1997; 99 (07) 1729-1738
  • 63 Uchiyama T, Kurabayashi M, Ohyama Y. , et al. Hypoxia induces transcription of the plasminogen activator inhibitor-1 gene through genistein-sensitive tyrosine kinase pathways in vascular endothelial cells. Arterioscler Thromb Vasc Biol 2000; 20 (04) 1155-1161
  • 64 Mojiri A, Nakhaii-Nejad M, Phan WL. , et al. Hypoxia results in upregulation and de novo activation of von Willebrand factor expression in lung endothelial cells. Arterioscler Thromb Vasc Biol 2013; 33 (06) 1329-1338
  • 65 Brill A, Suidan GL, Wagner DD. Hypoxia, such as encountered at high altitude, promotes deep vein thrombosis in mice. J Thromb Haemost 2013; 11 (09) 1773-1775
  • 66 Myers Jr D, Farris D, Hawley A. , et al. Selectins influence thrombosis in a mouse model of experimental deep venous thrombosis. J Surg Res 2002; 108 (02) 212-221
  • 67 Iba T, Levy JH. Inflammation and thrombosis: roles of neutrophils, platelets and endothelial cells and their interactions in thrombus formation during sepsis. J Thromb Haemost 2018; 16 (02) 231-241
  • 68 von Brühl ML, Stark K, Steinhart A. , et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med 2012; 209 (04) 819-835
  • 69 Wakefield TW, Linn MJ, Henke PK. , et al. Neovascularization during venous thrombosis organization: a preliminary study. J Vasc Surg 1999; 30 (05) 885-892
  • 70 Bochenek ML, Rosinus NS, Lankeit M. , et al. From thrombosis to fibrosis in chronic thromboembolic pulmonary hypertension. Thromb Haemost 2017; 117 (04) 769-783
  • 71 Evans CE, Wadoodi A, Humphries J. , et al. Local accumulation of hypoxia-inducible factor 2 alpha during venous thrombus resolution. Thromb Res 2014; 134 (03) 757-760
  • 72 Luther N, Shahneh F, Brähler M. , et al. Innate effector-memory T-cell activation regulates post-thrombotic vein wall inflammation and thrombus resolution. Circ Res 2016; 119 (12) 1286-1295
  • 73 Nosaka M, Ishida Y, Kimura A. , et al. Absence of IFN-γ accelerates thrombus resolution through enhanced MMP-9 and VEGF expression in mice. J Clin Invest 2011; 121 (07) 2911-2920
  • 74 Westrick RJ, Winn ME, Eitzman DT. Murine models of vascular thrombosis (Eitzman series). Arterioscler Thromb Vasc Biol 2007; 27 (10) 2079-2093
  • 75 Mackman N. Mouse models, risk factors, and treatments of venous thrombosis. Arterioscler Thromb Vasc Biol 2012; 32 (03) 554-555
  • 76 Kumar A, Kim CS, Hoffman TA. , et al. p53 impairs endothelial function by transcriptionally repressing Kruppel-like factor 2. Arterioscler Thromb Vasc Biol 2011; 31 (01) 133-141
  • 77 Bochenek ML, Bauer T, Gogiraju R. , et al. The endothelial tumor suppressor p53 is essential for venous thrombus formation in aged mice. Blood Adv 2018; 2 (11) 1300-1314
  • 78 McDonald AP, Meier TR, Hawley AE. , et al. Aging is associated with impaired thrombus resolution in a mouse model of stasis induced thrombosis. Thromb Res 2010; 125 (01) 72-78
  • 79 Culmer DL, Diaz JA, Hawley AE. , et al. Circulating and vein wall P-selectin promote venous thrombogenesis during aging in a rodent model. Thromb Res 2013; 131 (01) 42-48
  • 80 Bochenek ML, Schütz E, Schäfer K. Endothelial cell senescence and thrombosis: Ageing clots. Thromb Res 2016; 147: 36-45
  • 81 Vlodavsky I, Blich M, Li JP, Sanderson RD, Ilan N. Involvement of heparanase in atherosclerosis and other vessel wall pathologies. Matrix Biol 2013; 32 (05) 241-251
  • 82 Baker AB, Gibson WJ, Kolachalama VB. , et al. Heparanase regulates thrombosis in vascular injury and stent-induced flow disturbance. J Am Coll Cardiol 2012; 59 (17) 1551-1560
  • 83 Axelman E, Henig I, Crispel Y. , et al. Novel peptides that inhibit heparanase activation of the coagulation system. Thromb Haemost 2014; 112 (03) 466-477
  • 84 Crispel Y, Axelman E, Tatour M. , et al. Peptides inhibiting heparanase procoagulant activity significantly reduce tumour growth and vascularisation in a mouse model. Thromb Haemost 2016; 116 (04) 669-678
  • 85 Sprecher CA, Kisiel W, Mathewes S, Foster DC. Molecular cloning, expression, and partial characterization of a second human tissue-factor-pathway inhibitor. Proc Natl Acad Sci U S A 1994; 91 (08) 3353-3357
  • 86 Huang PL, Huang Z, Mashimo H. , et al. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 1995; 377 (6546): 239-242
  • 87 Inoue O, Hokamura K, Shirai T. , et al. Vascular smooth muscle cells stimulate platelets and facilitate thrombus formation through platelet CLEC-2: implications in atherothrombosis. PLoS One 2015; 10 (09) e0139357
  • 88 Kaul DK, Finnegan E, Barabino GA. Sickle red cell-endothelium interactions. Microcirculation 2009; 16 (01) 97-111
  • 89 Smith JD, Rowe JA, Higgins MK, Lavstsen T. Malaria's deadly grip: cytoadhesion of Plasmodium falciparum-infected erythrocytes. Cell Microbiol 2013; 15 (12) 1976-1983
  • 90 Grossin N, Wautier MP, Wautier JL. Red blood cell adhesion in diabetes mellitus is mediated by advanced glycation end product receptor and is modulated by nitric oxide. Biorheology 2009; 46 (01) 63-72
  • 91 Spring FA, Parsons SF, Ortlepp S. , et al. Intercellular adhesion molecule-4 binds alpha(4)beta(1) and alpha(V)-family integrins through novel integrin-binding mechanisms. Blood 2001; 98 (02) 458-466
  • 92 Hermand P, Gane P, Huet M. , et al. Red cell ICAM-4 is a novel ligand for platelet-activated alpha IIbbeta 3 integrin. J Biol Chem 2003; 278 (07) 4892-4898
  • 93 Bailly P, Tontti E, Hermand P, Cartron JP, Gahmberg CG. The red cell LW blood group protein is an intercellular adhesion molecule which binds to CD11/CD18 leukocyte integrins. Eur J Immunol 1995; 25 (12) 3316-3320
  • 94 Hebbel RP, Boogaerts MA, Eaton JW, Steinberg MH. Erythrocyte adherence to endothelium in sickle-cell anemia. A possible determinant of disease severity. N Engl J Med 1980; 302 (18) 992-995
  • 95 Smeets MW, Bierings R, Meems H. , et al. Platelet-independent adhesion of calcium-loaded erythrocytes to von Willebrand factor. PLoS One 2017; 12 (03) e0173077
  • 96 Thomsen RW, Schoonen WM, Farkas DK, Riis A, Fryzek JP, Sørensen HT. Risk of venous thromboembolism in splenectomized patients compared with the general population and appendectomized patients: a 10-year nationwide cohort study. J Thromb Haemost 2010; 8 (06) 1413-1416
  • 97 Bonderman D, Wilkens H, Wakounig S. , et al. Risk factors for chronic thromboembolic pulmonary hypertension. Eur Respir J 2009; 33 (02) 325-331
  • 98 Frey MK, Alias S, Winter MP. , et al. Splenectomy is modifying the vascular remodeling of thrombosis. J Am Heart Assoc 2014; 3 (01) e000772
  • 99 Schäfer K, Konstantinides S, Riedel C. , et al. Different mechanisms of increased luminal stenosis after arterial injury in mice deficient for urokinase- or tissue-type plasminogen activator. Circulation 2002; 106 (14) 1847-1852
  • 100 Yamamoto K, Takeshita K, Shimokawa T. , et al. Plasminogen activator inhibitor-1 is a major stress-regulated gene: implications for stress-induced thrombosis in aged individuals. Proc Natl Acad Sci U S A 2002; 99 (02) 890-895
  • 101 Pomero F, Di Minno MN, Fenoglio L, Gianni M, Ageno W, Dentali F. Is diabetes a hypercoagulable state? A critical appraisal. Acta Diabetol 2015; 52 (06) 1007-1016
  • 102 White RH. The epidemiology of venous thromboembolism. Circulation 2003; 107 (23) (Suppl. 01) I4-I8
  • 103 Evans CE, Humphries J, Waltham M. , et al. Upregulation of hypoxia-inducible factor 1 alpha in local vein wall is associated with enhanced venous thrombus resolution. Thromb Res 2011; 128 (04) 346-351
  • 104 Evans CE, Humphries J, Mattock K. , et al. Hypoxia and upregulation of hypoxia-inducible factor 1alpha stimulate venous thrombus recanalization. Arterioscler Thromb Vasc Biol 2010; 30 (12) 2443-2451
  • 105 Modarai B, Humphries J, Burnand KG. , et al. Adenovirus-mediated VEGF gene therapy enhances venous thrombus recanalization and resolution. Arterioscler Thromb Vasc Biol 2008; 28 (10) 1753-1759
  • 106 Varma MR, Moaveni DM, Dewyer NA. , et al. Deep vein thrombosis resolution is not accelerated with increased neovascularization. J Vasc Surg 2004; 40 (03) 536-542
  • 107 Lee M, Keener J, Xiao J, Long Zheng X, Rodgers GM. ADAMTS13 and its variants promote angiogenesis via upregulation of VEGF and VEGFR2. Cell Mol Life Sci 2015; 72 (02) 349-356
  • 108 Arderiu G, Peña E, Badimon L. Angiogenic microvascular endothelial cells release microparticles rich in tissue factor that promotes postischemic collateral vessel formation. Arterioscler Thromb Vasc Biol 2015; 35 (02) 348-357
  • 109 Shaikh FM, Callanan A, Kavanagh EG, Burke PE, Grace PA, McGloughlin TM. Fibrin: a natural biodegradable scaffold in vascular tissue engineering. Cells Tissues Organs 2008; 188 (04) 333-346
  • 110 Ribes JA, Ni F, Wagner DD, Francis CW. Mediation of fibrin-induced release of von Willebrand factor from cultured endothelial cells by the fibrin beta chain. J Clin Invest 1989; 84 (02) 435-442
  • 111 Scholz A, Plate KH, Reiss Y. Angiopoietin-2: a multifaceted cytokine that functions in both angiogenesis and inflammation. Ann N Y Acad Sci 2015; 1347: 45-51
  • 112 Rathnakumar K, Savant S, Giri H. , et al. Angiopoietin-2 mediates thrombin-induced monocyte adhesion and endothelial permeability. J Thromb Haemost 2016; 14 (08) 1655-1667
  • 113 Higgins SJ, De Ceunynck K, Kellum JA. , et al. Tie2 protects the vasculature against thrombus formation in systemic inflammation. J Clin Invest 2018; 128 (04) 1471-1484
  • 114 Walsh TG, Metharom P, Berndt MC. The functional role of platelets in the regulation of angiogenesis. Platelets 2015; 26 (03) 199-211
  • 115 Su JB. Vascular endothelial dysfunction and pharmacological treatment. World J Cardiol 2015; 7 (11) 719-741