CC BY-NC-ND 4.0 · Journal of Clinical Interventional Radiology ISVIR 2018; 02(03): 155-168
DOI: 10.1055/s-0038-1675881
Review Article
Indian Society of Vascular and Interventional Radiology

Acute Ischemic Stroke: A Review of Imaging, Patient Selection, and Management in the Endovascular Era. Part I: Initial Management and Imaging

Sharath Kumar G G
1   Department of Diagnostic and Interventional Neuroradiology, Apollo Hospitals, Bangalore, Karnataka, India
,
Chinmay P. Nagesh
1   Department of Diagnostic and Interventional Neuroradiology, Apollo Hospitals, Bangalore, Karnataka, India
› Author Affiliations
Further Information

Publication History

Received: 28 April 2018

Accepted after revision: 29 June 2018

Publication Date:
06 December 2018 (online)

Abstract

Till recently, the mainstay of management of acute ischemic stroke (AIS) has been intravenous thrombolysis. However, response to treatment and outcomes in the presence of a large vessel occlusion (LVO) were largely suboptimal. Endovascular thrombectomy techniques with stentrievers and aspiration catheters have revolutionized stroke treatment significantly, improving outcomes in this once untreatable disease. The interventional radiologist must play an active role in the stroke team in streamlining imaging as well as endovascular management. The focus of this review article is on initial management and imaging. Initial measures consist of patient resuscitation, basic investigations and assessment of stroke severity using the National Institutes of Health Stroke Scale (NIHSS), all of which have therapeutic and prognostic implications to be considered by the neurointerventionist. Imaging must aim to be swift and efficient. Choice of a modality must be based on available infrastructure as well as clinical-radiologic factors such as the time since ictus or posterior circulation involvement. Computed tomography (CT) is the preferred modality for its speed, whereas magnetic resonance imaging (MRI) remains the gold standard problem solving technique for detection of stroke. Exclusion of hemorrhagic stroke and other stroke mimics is the first objective. Thereafter, imaging is targeted toward assessing the parenchyma and vasculature. Defining the core and penumbra is the most important goal of parenchymal imaging. The core may be defined by the presence of early ischemic changes on CT, CT angiographic source images, or diffusion restriction on MRI. The penumbra is approximated by collateral status or perfusion methods. The prime directive of vascular imaging, either CT or magnetic resonance angiography (MRA) is to establish the presence of an LVO. Once confirmed, the decision for thrombolysis and/or thrombectomy is based on clinical and imaging criteria, the most ideal being that of a moderately severe stroke with a small core and LVO on imaging.

 
  • References

  • 1 Feigin VL, Lawes CM, Bennett DA, Barker-Collo SL, Parag V. Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol 2009; 8 (04) 355-369
  • 2 Kamalakannan S, Gudlavalleti ASV, Gudlavalleti VSM, Goenka S, Kuper H. Incidence & prevalence of stroke in India: a systematic review. Indian J Med Res 2017; 146 (02) 175-185
  • 3 Malhotra K, Gornbein J, Saver JL. Ischemic strokes due to large-vessel occlusions contribute disproportionately to stroke-related dependence and death: a review. Front Neurol 2017; 8: 651
  • 4 Hatano S. Experience from a multicentre stroke register: a preliminary report. Bull World Health Organ 1976; 54 (05) 541-553
  • 5 NIH Stroke Scale International. http://www.nihstrokescale.org/ Accessed May 31, 2018
  • 6 Powers WJ, Rabinstein AA, Ackerson T. et al; American Heart Association Stroke Council. 2018 Guidelines for the Early Management of Patients with Acute Ischemic Stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2018; 49 (03) e46-e110
  • 7 Saver JL. Time is brain—quantified. Stroke 2006; 37 (01) 263-266
  • 8 Lees KR, Bluhmki E, von Kummer R. et al; ECASS, ATLANTIS, NINDS and EPITHET rt-PA Study Group. Time to treatment with intravenous alteplase and outcome in stroke: an updated pooled analysis of ECASS, ATLANTIS, NINDS, and EPITHET trials. Lancet 2010; 375 9727 1695-1703
  • 9 Audebert HJ, Saver JL, Starkman S, Lees KR, Endres M. Prehospital stroke care: new prospects for treatment and clinical research. Neurology 2013; 81 (05) 501-508
  • 10 Harbison J, Hossain O, Jenkinson D, Davis J, Louw SJ, Ford GA. Diagnostic accuracy of stroke referrals from primary care, emergency room physicians, and ambulance staff using the face arm speech test. Stroke 2003; 34 (01) 71-76
  • 11 Aroor S, Singh R, Goldstein LB. BE-FAST (Balance, Eyes, Face, Arm, Speech, Time). Reducing the Proportion of Strokes Missed Using the FAST Mnemonic. 2017
  • 12 Krebes S, Ebinger M, Baumann AM. et al. Development and validation of a dispatcher identification algorithm for stroke emergencies. Stroke 2012; 43 (03) 776-781
  • 13 Ali SF, Viswanathan A, Singhal AB. et al; Partners Telestroke Network. The TeleStroke mimic (TM)-score: a prediction rule for identifying stroke mimics evaluated in a Telestroke Network. J Am Heart Assoc 2014; 3 (03) e000838
  • 14 Baron JC. Protecting the ischaemic penumbra as an adjunct to thrombectomy for acute stroke. Nat Rev Neurol 2018; 14 (06) 325-337
  • 15 Milne MSW, Holodinsky JK, Hill MD. et al. Drip ‘n Ship versus Mothership for Endovascular Treatment. Modeling the Best Transportation Options for Optimal Outcomes. 2017
  • 16 Jauch EC, Saver JL, Adams Jr HP. et al; American Heart Association Stroke Council; Council on Cardiovascular Nursing; Council on Peripheral Vascular Disease; Council on Clinical Cardiology. Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2013; 44 (03) 870-947
  • 17 Sacks D, Baxter B, Campbell BCV. et al. Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke: From the American Association of Neurological Surgeons (AANS), American Society of Neuroradiology (ASNR), Cardiovascular and Interventional Radiology Society of Europe (CIRSE), Canadian Interventional Radiology Association (CIRA), Congress of Neurological Surgeons (CNS), European Society of Minimally Invasive Neurological Therapy (ESMINT), European Society of Neuroradiology (ESNR), European Stroke Organization (ESO), Society for Cardiovascular Angiography and Interventions (SCAI), Society of Interventional Radiology (SIR), Society of NeuroInterventional Surgery (SNIS), and World Stroke Organization (WSO). J Vasc Interv Radiol 2018; 29 (04) 441-453
  • 18 Goyal M, Fargen KM, Menon BK. Acute stroke, Bayes’ theorem and the art and science of emergency decision-making. J Neurointerv Surg 2014; 6 (04) 256-259
  • 19 Brinjikji W, Demchuk AM, Murad MH. et al. Neurons over Nephrons. Stroke 2017; 48 (07) 1862-1868
  • 20 Astrup J, Siesjö BK, Symon L. Thresholds in cerebral ischemia—the ischemic penumbra. Stroke 1981; 12 (06) 723-725
  • 21 Rowley HA. The four Ps of acute stroke imaging: parenchyma, pipes, perfusion, and penumbra. AJNR Am J Neuroradiol 2001; 22 (04) 599-601
  • 22 Schröder J, Thomalla G. A critical review of Alberta stroke program early CT score for evaluation of acute stroke imaging. Front Neurol 2017; 7: 245
  • 23 Srinivasan A, Goyal M, Al Azri F, Lum C. State-of-the-art imaging of acute stroke. Radiographics 2006; 26 (Suppl. 01) S75-S95
  • 24 Mak HK, Yau K, Khong PL. et al; Alberta Stroke Programme Early CT Score. Hypodensity of >1/3 middle cerebral artery territory versus Alberta Stroke Programme Early CT Score (ASPECTS): comparison of two methods of quantitative evaluation of early CT changes in hyperacute ischemic stroke in the community setting. Stroke 2003; 34 (05) 1194-1196
  • 25 Yoo AJ, Chaudhry ZA, Nogueira RG. et al. Infarct volume is a pivotal biomarker after intra-arterial stroke therapy. Stroke 2012; 43 (05) 1323-1330
  • 26 Berkhemer OA, Fransen PS, Beumer D. et al; MR CLEAN Investigators. A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med 2015; 372 (01) 11-20
  • 27 Puetz V, Sylaja PN, Coutts SB. et al. Extent of hypoattenuation on CT angiography source images predicts functional outcome in patients with basilar artery occlusion. Stroke 2008; 39 (09) 2485-2490
  • 28 Mair G, Boyd EV, Chappell FM. et al; IST-3 Collaborative Group. Sensitivity and specificity of the hyperdense artery sign for arterial obstruction in acute ischemic stroke. Stroke 2015; 46 (01) 102-107
  • 29 Li Q, Davis S, Mitchell P, Dowling R, Yan B. Proximal hyperdense middle cerebral artery sign predicts poor response to thrombolysis. PLoS One 2014; 9 (05) e96123
  • 30 Menon BK, Almekhlafi MA, Pereira VM. et al; STAR Study Investigators. Optimal workflow and process-based performance measures for endovascular therapy in acute ischemic stroke: analysis of the solitaire FR thrombectomy for acute revascularization study. Stroke 2014; 45 (07) 2024-2029
  • 31 Kim HJ, Choi CG, Lee DH, Lee JH, Kim SJ, Suh DC. High-b-value diffusion-weighted MR imaging of hyperacute ischemic stroke at 1.5T. AJNR Am J Neuroradiol 2005; 26 (02) 208-215
  • 32 Rosso C, Drier A, Lacroix D. et al. Diffusion-weighted MRI in acute stroke within the first 6 hours: 1.5 or 3. Neurology 2010; 74 (24) 1946-1953
  • 33 Kranz PG, Eastwood JD. Does diffusion-weighted imaging represent the ischemic core?. An evidence-based systematic review. AJNR Am J Neuroradiol 2009; 30 (06) 1206-1212
  • 34 Albach FN, Brunecker P, Usnich T. et al. Complete early reversal of diffusion-weighted imaging hyperintensities after ischemic stroke is mainly limited to small embolic lesions. Stroke 2013; 44 (04) 1043-1048
  • 35 Yamada R, Yoneda Y, Kageyama Y, Ichikawa K. Reversal of large ischemic injury on hyper-acute diffusion MRI. Case Rep Neurol 2012; 4 (03) 177-180
  • 36 Campbell BC, Davis SM, Donnan GA. How much diffusion lesion reversal occurs after treatment within three-hours of stroke onset?. Int J Stroke 2013; 8 (05) 329-330
  • 37 Ringer TM, Neumann-Haefelin T, Sobel RA, Moseley ME, Yenari MA. Reversal of early diffusion-weighted magnetic resonance imaging abnormalities does not necessarily reflect tissue salvage in experimental cerebral ischemia. Stroke 2001; 32 (10) 2362-2369
  • 38 Inoue M, Mlynash M, Christensen S. et al; DEFUSE 2 Investigators. Early diffusion-weighted imaging reversal after endovascular reperfusion is typically transient in patients imaged 3 to 6 hours after onset. Stroke 2014; 45 (04) 1024-1028
  • 39 Soize S, Tisserand M, Charron S. et al. How sustained is 24-hour diffusion-weighted imaging lesion reversal?. Serial magnetic resonance imaging in a patient cohort thrombolized within 4.5 hours of stroke onset. Stroke 2015; 46 (03) 704-710
  • 40 Menjot de ChampfleurN, Saver JL, Goyal M. et al. Efficacy of stent-retriever thrombectomy in magnetic resonance imaging versus computed tomographic perfusion-selected patients in SWIFT PRIME trial (Solitaire FR With the Intention for Thrombectomy as Primary Endovascular Treatment for Acute Ischemic Stroke). Stroke 2017; 48 (06) 1560-1566
  • 41 Inoue M, Olivot JM, Labreuche J. et al. Impact of diffusion-weighted imaging Alberta stroke program early computed tomography score on the success of endovascular reperfusion therapy. Stroke 2014; 45 (07) 1992-1998
  • 42 Lansberg MG, Straka M, Kemp S. et al; DEFUSE 2 study investigators. MRI profile and response to endovascular reperfusion after stroke (DEFUSE 2): a prospective cohort study. Lancet Neurol 2012; 11 (10) 860-867
  • 43 Saver JL, Goyal M, Bonafe A. et al; SWIFT PRIME Investigators. Solitaire™ with the Intention for Thrombectomy as Primary Endovascular Treatment for Acute Ischemic Stroke (SWIFT PRIME) trial: protocol for a randomized, controlled, multi-center study comparing the Solitaire revascularization device with IV tPA with IV tPA alone in acute ischemic stroke. Int J Stroke 2015; 10 (03) 439-448
  • 44 Campbell BC, Mitchell PJ, Yan B. et al; EXTEND-IA investigators. A multicenter, randomized, controlled study to investigate EXtending the time for Thrombolysis in Emergency Neurological Deficits with Intra-Arterial therapy (EXTEND-IA). Int J Stroke 2014; 9 (01) 126-132
  • 45 Nogueira RG, Jadhav AP, Haussen DC. et al; DAWN Trial Investigators. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med 2018; 378 (01) 11-21
  • 46 Geraldo AF, Berner LP, Haesebaert J. et al. Does b1000-b0 mismatch challenge diffusion-weighted imaging-fluid attenuated inversion recovery mismatch in stroke?. Stroke 2016; 47 (03) 877-881
  • 47 Thomalla G, Cheng B, Ebinger M. et al; STIR and VISTA Imaging Investigators. DWI-FLAIR mismatch for the identification of patients with acute ischaemic stroke within 4•5 h of symptom onset (PRE-FLAIR): a multicentre observational study. Lancet Neurol 2011; 10 (11) 978-986
  • 48 Emeriau S, Serre I, Toubas O, Pombourcq F, Oppenheim C, Pierot L. Can diffusion-weighted imaging-fluid-attenuated inversion recovery mismatch (positive diffusion-weighted imaging/negative fluid-attenuated inversion recovery) at 3 Tesla identify patients with stroke at < 4. Stroke 2013; 44 (06) 1647-1651
  • 49 Wouters A, Dupont P, Christensen S. et al. Association between time from stroke onset and fluid-attenuated inversion recovery lesion intensity is modified by status of collateral circulation. Stroke 2016; 47 (04) 1018-1022
  • 50 Fahed R, Lecler A, Sabben C. et al. DWI-ASPECTS (Diffusion-Weighted Imaging-Alberta Stroke Program Early Computed Tomography Scores) and DWI-FLAIR (Diffusion-Weighted Imaging-Fluid Attenuated Inversion Recovery) mismatch in thrombectomy candidates: an intrarater and interrater agreement study. Stroke 2018; 49 (01) 223-227
  • 51 Wouters A, Dupont P, Norrving B. et al. Prediction of stroke onset is improved by relative fluid-attenuated inversion recovery and perfusion imaging compared to the visual diffusion-weighted imaging/fluid-attenuated inversion recovery mismatch. Stroke 2016; 47 (10) 2559-2564
  • 52 Liu W, Xu G, Yue X. et al. Hyperintense vessels on FLAIR: a useful non-invasive method for assessing intracerebral collaterals. Eur J Radiol 2011; 80 (03) 786-791
  • 53 Kesavadas C, Santhosh K, Thomas B. Susceptibility weighted imaging in cerebral hypoperfusion-can we predict increased oxygen extraction fraction?. Neuroradiology 2010; 52 (11) 1047-1054
  • 54 Lou M, Chen Z, Wan J. et al. Susceptibility-diffusion mismatch predicts thrombolytic outcomes: a retrospective cohort study. AJNR Am J Neuroradiol 2014; 35 (11) 2061-2067
  • 55 Santhosh K, Kesavadas C, Thomas B, Gupta AK, Thamburaj K, Kapilamoorthy TR. Susceptibility weighted imaging: a new tool in magnetic resonance imaging of stroke. Clin Radiol 2009; 64 (01) 74-83
  • 56 Boyle K, Joundi RA, Aviv RI. An historical and contemporary review of endovascular therapy for acute ischemic stroke. Neurovascular Imaging 2017; 3 (01) 1
  • 57 Riedel CH, Zimmermann P, Jensen-Kondering U, Stingele R, Deuschl G, Jansen O. The importance of size: successful recanalization by intravenous thrombolysis in acute anterior stroke depends on thrombus length. Stroke 2011; 42 (06) 1775-1777
  • 58 Puetz V, Dzialowski I, Hill MD. et al; Calgary CTA Study Group. Intracranial thrombus extent predicts clinical outcome, final infarct size and hemorrhagic transformation in ischemic stroke: the clot burden score. Int J Stroke 2008; 3 (04) 230-236
  • 59 Sharma M, Fox AJ, Symons S, Jairath A, Aviv RI. CT angiographic source images: flow- or volume-weighted?. AJNR Am J Neuroradiol 2011; 32 (02) 359-364
  • 60 Bhatia R, Bal S, Shobha N. et al; Calgary CTA Group. CT angiographic source images predict outcome and final infarct volume better than noncontrast CT in proximal vascular occlusions. Stroke 2011; 42 (06) 1575-1580
  • 61 Puetz V, Sylaja PN, Hill MD. et al. CT angiography source images predict final infarct extent in patients with basilar artery occlusion. AJNR Am J Neuroradiol 2009; 30 (10) 1877-1883
  • 62 Pulli B, Schaefer PW, Hakimelahi R. et al. Acute ischemic stroke: infarct core estimation on CT angiography source images depends on CT angiography protocol. Radiology 2012; 262 (02) 593-604
  • 63 Nogueira RG, Liebeskind DS, Sung G, Duckwiler G, Smith WS. MERCI.; Multi MERCI Writing Committee. Predictors of good clinical outcomes, mortality, and successful revascularization in patients with acute ischemic stroke undergoing thrombectomy: pooled analysis of the Mechanical Embolus Removal in Cerebral Ischemia (MERCI) and Multi MERCI Trials. Stroke 2009; 40 (12) 3777-3783
  • 64 Yeo L, Paliwal P, Teoh HL. et al. Assessment of intracranial collaterals on CT angiography in anterior circulation acute ischemic stroke. AJNR Am J Neuroradiol 2015; 36 (02) 289-294
  • 65 Kamalian S, Kemmling A, Borgie RC. et al. Admission insular infarction >25% is the strongest predictor of large mismatch loss in proximal middle cerebral artery stroke. Stroke 2013; 44 (11) 3084-3089
  • 66 Menon BK, d'Esterre CD, Qazi EM. et al. Multiphase CT angiography: a new tool for the imaging triage of patients with acute ischemic stroke. Radiology 2015; 275 (02) 510-520
  • 67 Medicine USNLo. ClinicalTrials.gov Identifier: NCT02184936, Measuring Collaterals with Multi-phase CT Angiography in Patients with Ischemic Stroke (PRove-IT). https://clinicaltrials.gov/show/NCT02184936 Accessed March 4, 2018
  • 68 Christoforidis GA, Vakil P, Ansari SA, Dehkordi FH, Carroll TJ. Impact of pial collaterals on infarct growth rate in experimental acute ischemic stroke. AJNR Am J Neuroradiol 2017; 38 (02) 270-275
  • 69 Ryu WHA, Avery MB, Dharampal N, Allen IE, Hetts SW. Utility of perfusion imaging in acute stroke treatment: a systematic review and meta-analysis. J Neurointerv Surg 2017; 9 (10) 1012-1016
  • 70 González RG, Copen WA, Schaefer PW. et al. The Massachusetts General Hospital acute stroke imaging algorithm: an experience and evidence based approach. J Neurointerv Surg 2013; 5 (Suppl. 01) i7-i12
  • 71 Hoeffner EG, Case I, Jain R. et al. Cerebral perfusion CT: technique and clinical applications. Radiology 2004; 231 (03) 632-644
  • 72 Calamante F, Gadian DG, Connelly A. Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magn Reson Med 2000; 44 (03) 466-473
  • 73 Copen WA, Schaefer PW, Wu O. MR perfusion imaging in acute ischemic stroke. Neuroimaging Clin N Am 2011; 21 (02) 259-283 x
  • 74 Nael K, Meshksar A, Ellingson B. et al. Combined low-dose contrast-enhanced MR angiography and perfusion for acute ischemic stroke at 3T: a more efficient stroke protocol. AJNR Am J Neuroradiol 2014; 35 (06) 1078-1084
  • 75 Rahul KR, Santhosh P, Dilip KumarMP, Mehta P, Cherian M. Arterial Spin Labeling—Can Neurointerventionists Rely on This Novel Technique?. A Case Series on Successful Use of Arterial Spin Labeling in Acute Stroke Imaging. J Clin Interv Radiol ISVIR 2017; 01 (03) 144-149
  • 76 Zaharchuk G. Arterial spin-labeled perfusion imaging in acute ischemic stroke. Stroke 2014; 45 (04) 1202-1207
  • 77 Wang DJ, Alger JR, Qiao JX. et al; UCLA Stroke Investigators. Multi-delay multi-parametric arterial spin-labeled perfusion MRI in acute ischemic stroke - Comparison with dynamic susceptibility contrast enhanced perfusion imaging. Neuroimage Clin 2013; 3: 1-7
  • 78 Lin L, Bivard A, Krishnamurthy V, Levi CR, Parsons MW, Whole-Brain CT. Whole-brain CT perfusion to quantify acute ischemic penumbra and core. Radiology 2016; 279 (03) 876-887
  • 79 Bivard A, Levi C, Spratt N, Parsons M. Perfusion CT in acute stroke: a comprehensive analysis of infarct and penumbra. Radiology 2013; 267 (02) 543-550
  • 80 Kameda K, Uno J, Otsuji R. et al. Optimal thresholds for ischemic penumbra predicted by computed tomography perfusion in patients with acute ischemic stroke treated with mechanical thrombectomy. J Neurointerv Surg 2018; 10 (03) 279-284
  • 81 Campbell BC, Christensen S, Levi CR. et al. Cerebral blood flow is the optimal CT perfusion parameter for assessing infarct core. Stroke 2011; 42 (12) 3435-3440
  • 82 Bivard A, Krishnamurthy V, Stanwell P. et al. Arterial spin labeling versus bolus-tracking perfusion in hyperacute stroke. Stroke 2014; 45 (01) 127-133
  • 83 Zussman BM, Boghosian G, Gorniak RJ. et al. The relative effect of vendor variability in CT perfusion results: a method comparison study. AJR Am J Roentgenol 2011; 197 (02) 468-473
  • 84 Straka M, Albers GW, Bammer R. Real-time diffusion-perfusion mismatch analysis in acute stroke. J Magn Reson Imaging 2010; 32 (05) 1024-1037
  • 85 Austein F, Riedel C, Kerby T. et al. Comparison of perfusion ct software to predict the final infarct volume after thrombectomy. Stroke 2016; 47 (09) 2311-2317
  • 86 Campbell BC, Mitchell PJ, Kleinig TJ. et al; EXTEND-IA Investigators. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med 2015; 372 (11) 1009-1018
  • 87 Albers GW, Marks MP, Kemp S. et al; DEFUSE 3 Investigators. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med 2018; 378 (08) 708-718
  • 88 Mokin M, Levy EI, Saver JL. et al; SWIFT PRIME Investigators. Predictive Value of RAPID assessed perfusion thresholds on final infarct volume in SWIFT PRIME (Solitaire With the Intention for Thrombectomy as Primary Endovascular Treatment). Stroke 2017; 48 (04) 932-938
  • 89 Turk AS, Magarick JA, Frei D. et al. CT perfusion-guided patient selection for endovascular recanalization in acute ischemic stroke: a multicenter study. J Neurointerv Surg 2013; 5 (06) 523-527
  • 90 Demeestere J, Garcia-Esperon C, Garcia-Bermejo P. et al. Evaluation of hyperacute infarct volume using ASPECTS and brain CT perfusion core volume. Neurology 2017; 88 (24) 2248-2253
  • 91 Sims JR, Gharai LR, Schaefer PW. et al. ABC/2 for rapid clinical estimate of infarct, perfusion, and mismatch volumes. Neurology 2009; 72 (24) 2104-2110
  • 92 Lansberg MG, Lee J, Christensen S. et al. RAPID automated patient selection for reperfusion therapy: a pooled analysis of the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET) and the Diffusion and Perfusion Imaging Evaluation for Understanding Stroke Evolution (DEFUSE) study. Stroke 2011; 42 (06) 1608-1614