Semin Liver Dis 2019; 39(01): 013-025
DOI: 10.1055/s-0038-1676097
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Noncoding RNA in Cholangiocarcinoma

Massimiliano Salati
1   Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
2   Department of Medical Oncology, University Hospital of Modena and Reggio Emilia, Modena, Italy
,
Chiara Braconi
1   Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
3   Gastrointestinal and Lymphoma Unit, The Royal Marsden NHS Trust Surrey and London, London, United Kingdom
› Author Affiliations
Further Information

Publication History

Publication Date:
07 December 2018 (online)

Abstract

Cholangiocarcinomas (CCAs) are tumors with a dismal prognosis. Early diagnosis is a key challenge because of the lack of specific symptoms, and the curability rate is low due to the difficulty in achieving a radical resection and the intrinsic chemoresistance of CCA cells. Noncoding RNAs (ncRNAs) are transcripts that are not translated into proteins but exert their functional role by regulating the transcription and translation of other genes. The discovery of the first ncRNA dates back to 1993 when the microRNA (miRNA) lin-4 was discovered in Caenorhabditis elegans. Only 10 years later, miRNAs were shown to play an oncogenic role in cancer cells and within 20 years miRNA therapeutics were tested in humans. Here, the authors review the latest evidence for a role for ncRNAs in CCA and discuss the promise and challenges associated with the introduction of ncRNAs into clinical practice.

 
  • References

  • 1 Braconi C, Patel T. Cholangiocarcinoma: new insights into disease pathogenesis and biology. Infect Dis Clin North Am 2010; 24 (04) 871-884 , vii
  • 2 Marcano-Bonilla L, Mohamed EA, Mounajjed T, Roberts LR. Biliary tract cancers: epidemiology, molecular pathogenesis and genetic risk associations. Linchuang Zhongliuxue Zazhi 2016; 5 (05) 61
  • 3 Saha SK, Zhu AX, Fuchs CS, Brooks GA. Forty-year trends in cholangiocarcinoma incidence in the U.S.: intrahepatic disease on the rise. Oncologist 2016; 21 (05) 594-599
  • 4 Fitzmaurice C, Akinyemiju TF, Al Lami FH. , et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2016: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol 2018; 4 (11) 1553-1568
  • 5 Rizvi S, Khan SA, Hallemeier CL, Kelley RK, Gores GJ. Cholangiocarcinoma: evolving concepts and therapeutic strategies. Nat Rev Clin Oncol 2018; 15 (02) 95-111
  • 6 Patel T. Increasing incidence and mortality of primary intrahepatic cholangiocarcinoma in the United States. Hepatology 2001; 33 (06) 1353-1357
  • 7 Bridgewater J, Galle PR, Khan SA. , et al. Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma. J Hepatol 2014; 60 (06) 1268-1289
  • 8 Rizvi S, Gores GJ. Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology 2013; 145 (06) 1215-1229
  • 9 Valle JW, Borbath I, Khan SA, Huguet F, Gruenberger T, Arnold D. ; ESMO Guidelines Committee. Biliary cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2016; 27 (Suppl 5): v28-v37
  • 10 Razumilava N, Gores GJ. Cholangiocarcinoma. Lancet 2014; 383 (9935): 2168-2179
  • 11 Valle J, Wasan H, Palmer DH. , et al; ABC-02 Trial Investigators. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med 2010; 362 (14) 1273-1281
  • 12 Valle JW, Furuse J, Jitlal M. , et al. Cisplatin and gemcitabine for advanced biliary tract cancer: a meta-analysis of two randomised trials. Ann Oncol 2014; 25 (02) 391-398
  • 13 Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 2009; 10 (10) 704-714
  • 14 Valle JW, Lamarca A, Goyal L, Barriuso J, Zhu AX. New horizons for precision medicine in biliary tract cancers. Cancer Discov 2017; 7 (09) 943-962
  • 15 Chan-On W, Nairismägi ML, Ong CK. , et al. Exome sequencing identifies distinct mutational patterns in liver fluke-related and non-infection-related bile duct cancers. Nat Genet 2013; 45 (12) 1474-1478
  • 16 Jusakul A, Cutcutache I, Yong CH. , et al. Whole-genome and epigenomic landscapes of etiologically distinct subtypes of cholangiocarcinoma. Cancer Discov 2017; 7 (10) 1116-1135
  • 17 Farshidfar F, Zheng S, Gingras MC. , et al; Cancer Genome Atlas Network. Integrative genomic analysis of cholangiocarcinoma identifies distinct IDH-mutant molecular profiles. Cell Reports 2017; 19 (13) 2878-2880
  • 18 Pennisi E. Genomics. ENCODE project writes eulogy for junk DNA. Science 2012; 337 (6099) 1159-1161
  • 19 Dozmorov MG, Giles CB, Koelsch KA, Wren JD. Systematic classification of non-coding RNAs by epigenomic similarity. BMC Bioinformatics 2013; 14 (Suppl 14): S2
  • 20 Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120 (01) 15-20
  • 21 Ling H, Fabbri M, Calin GA. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov 2013; 12 (11) 847-865
  • 22 Lu J, Getz G, Miska EA. , et al. MicroRNA expression profiles classify human cancers. Nature 2005; 435 (7043) 834-838
  • 23 Volinia S, Calin GA, Liu CG. , et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 2006; 103 (07) 2257-2261
  • 24 Meng F, Henson R, Lang M. , et al. Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 2006; 130 (07) 2113-2129
  • 25 Selaru FM, Olaru AV, Kan T. , et al. MicroRNA-21 is overexpressed in human cholangiocarcinoma and regulates programmed cell death 4 and tissue inhibitor of metalloproteinase 3. Hepatology 2009; 49 (05) 1595-1601
  • 26 Zhang J, Han C, Wu T. MicroRNA-26a promotes cholangiocarcinoma growth by activating β-catenin. Gastroenterology 2012; 143 (01) 246-56.e8
  • 27 Wang XW, Heegaard NH, Orum H. MicroRNAs in liver disease. Gastroenterology 2012; 142 (07) 1431-1443
  • 28 Li H, Zhou ZQ, Yang ZR. , et al. MicroRNA-191 acts as a tumor promoter by modulating the TET1-p53 pathway in intrahepatic cholangiocarcinoma. Hepatology 2017; 66 (01) 136-151
  • 29 Wang J, Xie H, Ling Q. , et al. Coding-noncoding gene expression in intrahepatic cholangiocarcinoma. Transl Res 2016; 168: 107-121
  • 30 Olaru AV, Ghiaur G, Yamanaka S. , et al. MicroRNA down-regulated in human cholangiocarcinoma control cell cycle through multiple targets involved in the G1/S checkpoint. Hepatology 2011; 54 (06) 2089-2098
  • 31 Mott JL, Kobayashi S, Bronk SF, Gores GJ. mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene 2007; 26 (42) 6133-6140
  • 32 Razumilava N, Bronk SF, Smoot RL. , et al. miR-25 targets TNF-related apoptosis inducing ligand (TRAIL) death receptor-4 and promotes apoptosis resistance in cholangiocarcinoma. Hepatology 2012; 55 (02) 465-475
  • 33 Oishi N, Kumar MR, Roessler S. , et al. Transcriptomic profiling reveals hepatic stem-like gene signatures and interplay of miR-200c and epithelial-mesenchymal transition in intrahepatic cholangiocarcinoma. Hepatology 2012; 56 (05) 1792-1803
  • 34 Liu Z, Jin ZY, Liu CH, Xie F, Lin XS, Huang Q. MicroRNA-21 regulates biological behavior by inducing EMT in human cholangiocarcinoma. Int J Clin Exp Pathol 2015; 8 (05) 4684-4694
  • 35 Liu CH, Huang Q, Jin ZY, Zhu CL, Liu Z, Wang C. miR-21 and KLF4 jointly augment epithelial‑mesenchymal transition via the Akt/ERK1/2 pathway. Int J Oncol 2017; 50 (04) 1109-1115
  • 36 Li B, Han Q, Zhu Y, Yu Y, Wang J, Jiang X. Down-regulation of miR-214 contributes to intrahepatic cholangiocarcinoma metastasis by targeting twist. FEBS J 2012; 279 (13) 2393-2398
  • 37 Li J, Yao L, Li G. , et al. miR-221 promotes epithelial-mesenchymal transition through targeting PTEN and forms a positive feedback loop with β-catenin/c-Jun signaling pathway in extra-hepatic cholangiocarcinoma. PLoS ONE 2015; 10 (10) e0141168
  • 38 Wang Q, Tang H, Yin S, Dong C. Downregulation of microRNA-138 enhances the proliferation, migration and invasion of cholangiocarcinoma cells through the upregulation of RhoC/p-ERK/MMP-2/MMP-9. Oncol Rep 2013; 29 (05) 2046-2052
  • 39 Park J, Tadlock L, Gores GJ, Patel T. Inhibition of interleukin 6-mediated mitogen-activated protein kinase activation attenuates growth of a cholangiocarcinoma cell line. Hepatology 1999; 30 (05) 1128-1133
  • 40 Meng F, Yamagiwa Y, Ueno Y, Patel T. Over-expression of interleukin-6 enhances cell survival and transformed cell growth in human malignant cholangiocytes. J Hepatol 2006; 44 (06) 1055-1065
  • 41 Lin KY, Ye H, Han BW. , et al. Genome-wide screen identified let-7c/miR-99a/miR-125b regulating tumor progression and stem-like properties in cholangiocarcinoma. Oncogene 2016; 35 (26) 3376-3386
  • 42 Meng F, Henson R, Wehbe-Janek H, Smith H, Ueno Y, Patel T. The MicroRNA let-7a modulates interleukin-6-dependent STAT-3 survival signaling in malignant human cholangiocytes. J Biol Chem 2007; 282 (11) 8256-8264
  • 43 Meng F, Wehbe-Janek H, Henson R, Smith H, Patel T. Epigenetic regulation of microRNA-370 by interleukin-6 in malignant human cholangiocytes. Oncogene 2008; 27 (03) 378-386
  • 44 Braconi C, Huang N, Patel T. MicroRNA-dependent regulation of DNA methyltransferase-1 and tumor suppressor gene expression by interleukin-6 in human malignant cholangiocytes. Hepatology 2010; 51 (03) 881-890 Doi: 10.1002/hep.23381
  • 45 Plieskatt JL, Rinaldi G, Feng Y. , et al. Distinct miRNA signatures associate with subtypes of cholangiocarcinoma from infection with the tumourigenic liver fluke Opisthorchis viverrini. J Hepatol 2014; 61 (04) 850-858
  • 46 Chusorn P, Namwat N, Loilome W. , et al. Overexpression of microRNA-21 regulating PDCD4 during tumorigenesis of liver fluke-associated cholangiocarcinoma contributes to tumor growth and metastasis. Tumour Biol 2013; 34 (03) 1579-1588
  • 47 Raggi C, Invernizzi P, Andersen JB. Impact of microenvironment and stem-like plasticity in cholangiocarcinoma: molecular networks and biological concepts. J Hepatol 2015; 62 (01) 198-207
  • 48 Mertens JC, Fingas CD, Christensen JD. , et al. Therapeutic effects of deleting cancer-associated fibroblasts in cholangiocarcinoma. Cancer Res 2013; 73 (02) 897-907
  • 49 Utaijaratrasmi P, Vaeteewoottacharn K, Tsunematsu T. , et al. The microRNA-15a-PAI-2 axis in cholangiocarcinoma-associated fibroblasts promotes migration of cancer cells. Mol Cancer 2018; 17 (01) 10
  • 50 Kogure T, Yan IK, Lin WL, Patel T. Extracellular vesicle-mediated transfer of a novel long noncoding RNA TUC339: a mechanism of intercellular signaling in human hepatocellular cancer. Genes Cancer 2013; 4 (7-8): 261-272
  • 51 Kogure T, Lin WL, Yan IK, Braconi C, Patel T. Intercellular nanovesicle-mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology 2011; 54 (04) 1237-1248
  • 52 Masyuk AI, Huang BQ, Ward CJ. , et al. Biliary exosomes influence cholangiocyte regulatory mechanisms and proliferation through interaction with primary cilia. Am J Physiol Gastrointest Liver Physiol 2010; 299 (04) G990-G999
  • 53 Sirica AE. The role of cancer-associated myofibroblasts in intrahepatic cholangiocarcinoma. Nat Rev Gastroenterol Hepatol 2011; 9 (01) 44-54
  • 54 Haga H, Yan IK, Takahashi K, Wood J, Zubair A, Patel T. Tumour cell-derived extracellular vesicles interact with mesenchymal stem cells to modulate the microenvironment and enhance cholangiocarcinoma growth. J Extracell Vesicles 2015; 4: 24900
  • 55 Li L, Piontek K, Ishida M. , et al. Extracellular vesicles carry microRNA-195 to intrahepatic cholangiocarcinoma and improve survival in a rat model. Hepatology 2017; 65 (02) 501-514
  • 56 Schmitt AM, Chang HY. Long noncoding RNAs in cancer pathways. Cancer Cell 2016; 29 (04) 452-463
  • 57 Xu Y, Wang Z, Jiang X, Cui Y. Overexpression of long noncoding RNA H19 indicates a poor prognosis for cholangiocarcinoma and promotes cell migration and invasion by affecting epithelial-mesenchymal transition. Biomed Pharmacother 2017; 92: 17-23
  • 58 Lu X, Zhou C, Li R, Deng Y, Zhao L, Zhai W. Long noncoding RNA AFAP1-AS1 promoted tumor growth and invasion in cholangiocarcinoma. Cell Physiol Biochem 2017; 42 (01) 222-230
  • 59 Ma SL, Li AJ, Hu ZY, Shang FS, Wu MC. Co-expression of the carbamoyl‑phosphate synthase 1 gene and its long non‑coding RNA correlates with poor prognosis of patients with intrahepatic cholangiocarcinoma. Mol Med Rep 2015; 12 (06) 7915-7926
  • 60 Wang C, Mao ZP, Wang L. , et al. Long non-coding RNA MALAT1 promotes cholangiocarcinoma cell proliferation and invasion by activating PI3K/Akt pathway. Neoplasma 2017; 64 (05) 725-731
  • 61 Xu Y, Jiang X, Cui Y. Upregulated long noncoding RNA PANDAR predicts an unfavorable prognosis and promotes tumorigenesis in cholangiocarcinoma. Onco Targets Ther 2017; 10: 2873-2883
  • 62 Jiang XM, Li ZL, Li JL. , et al. LncRNA CCAT1 as the unfavorable prognostic biomarker for cholangiocarcinoma. Eur Rev Med Pharmacol Sci 2017; 21 (06) 1242-1247
  • 63 Xu Y, Leng K, Li Z. , et al. The prognostic potential and carcinogenesis of long non-coding RNA TUG1 in human cholangiocarcinoma. Oncotarget 2017; 8 (39) 65823-65835
  • 64 Zhang F, Wan M, Xu Y. , et al. Long noncoding RNA PCAT1 regulates extrahepatic cholangiocarcinoma progression via the Wnt/β-catenin-signaling pathway. Biomed Pharmacother 2017; 94: 55-62
  • 65 Wang WT, Ye H, Wei PP. , et al. LncRNAs H19 and HULC, activated by oxidative stress, promote cell migration and invasion in cholangiocarcinoma through a ceRNA manner. J Hematol Oncol 2016; 9 (01) 117
  • 66 Carotenuto P, Fassan M, Pandolfo R. , et al. Wnt signalling modulates transcribed-ultraconserved regions in hepatobiliary cancers. Gut 2017; 66 (07) 1268-1277
  • 67 Iyer MK, Niknafs YS, Malik R. , et al. The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 2015; 47 (03) 199-208
  • 68 Braconi C, Valeri N, Kogure T. , et al. Expression and functional role of a transcribed noncoding RNA with an ultraconserved element in hepatocellular carcinoma. Proc Natl Acad Sci U S A 2011; 108 (02) 786-791
  • 69 Ranzani V, Rossetti G, Panzeri I. , et al. The long intergenic noncoding RNA landscape of human lymphocytes highlights the regulation of T cell differentiation by linc-MAF-4. Nat Immunol 2015; 16 (03) 318-325
  • 70 Arroyo JD, Chevillet JR, Kroh EM. , et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A 2011; 108 (12) 5003-5008
  • 71 Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA. MicroRNAs in body fluids: the mix of hormones and biomarkers. Nat Rev Clin Oncol 2011; 8 (08) 467-477
  • 72 Patel T. Extracellular vesicle noncoding RNA: new players in the diagnosis and pathogenesis of cholangiocarcinoma. Hepatology 2014; 60 (03) 782-784
  • 73 Bernuzzi F, Marabita F, Lleo A. , et al. Serum microRNAs as novel biomarkers for primary sclerosing cholangitis and cholangiocarcinoma. Clin Exp Immunol 2016; 185 (01) 61-71
  • 74 Voigtländer T, Gupta SK, Thum S. , et al. MicroRNAs in serum and bile of patients with primary sclerosing cholangitis and/or cholangiocarcinoma. PLoS One 2015; 10 (10) e0139305
  • 75 Li L, Masica D, Ishida M. , et al. Human bile contains microRNA-laden extracellular vesicles that can be used for cholangiocarcinoma diagnosis. Hepatology 2014; 60 (03) 896-907
  • 76 Silakit R, Loilome W, Yongvanit P. , et al. Urinary microRNA-192 and microRNA-21 as potential indicators for liver fluke-associated cholangiocarcinoma risk group. Parasitol Int 2017; 66 (04) 479-485
  • 77 Arbelaiz A, Azkargorta M, Krawczyk M. , et al. Serum extracellular vesicles contain protein biomarkers for primary sclerosing cholangitis and cholangiocarcinoma. Hepatology 2017; 66 (04) 1125-1143
  • 78 Julich-Haertel H, Urban SK, Krawczyk M. , et al. Cancer-associated circulating large extracellular vesicles in cholangiocarcinoma and hepatocellular carcinoma. J Hepatol 2017; 67 (02) 282-292
  • 79 Hodi FS, O'Day SJ, McDermott DF. , et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010; 363 (08) 711-723
  • 80 Robert C, Long GV, Brady B. , et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 2015; 372 (04) 320-330
  • 81 Robert C, Schachter J, Long GV. , et al; KEYNOTE-006 investigators. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 2015; 372 (26) 2521-2532
  • 82 Wang LJ, He CC, Sui X. , et al. MiR-21 promotes intrahepatic cholangiocarcinoma proliferation and growth in vitro and in vivo by targeting PTPN14 and PTEN. Oncotarget 2015; 6 (08) 5932-5946
  • 83 Wang LJ, Zhang KL, Zhang N. , et al. Serum miR-26a as a diagnostic and prognostic biomarker in cholangiocarcinoma. Oncotarget 2015; 6 (21) 18631-18640
  • 84 Li J, Gao B, Huang Z. , et al. Prognostic significance of microRNA-203 in cholangiocarcinoma. Int J Clin Exp Pathol 2015; 8 (08) 9512-9516
  • 85 Valeri N, Gasparini P, Fabbri M. , et al. Modulation of mismatch repair and genomic stability by miR-155. Proc Natl Acad Sci U S A 2010; 107 (15) 6982-6987
  • 86 Goyal L, Saha SK, Liu LY. , et al. Polyclonal secondary FGFR2 mutations drive acquired resistance to FGFR inhibition in patients with FGFR2 fusion-positive cholangiocarcinoma. Cancer Discov 2017; 7 (03) 252-263
  • 87 Javle M, Lowery M, Shroff RT. , et al. Phase II Study of BGJ398 in Patients With FGFR-Altered Advanced Cholangiocarcinoma. J Clin Oncol 2018; 36 (03) 276-282
  • 88 Novarino AMT, Satolli MA, Chiappino I. , et al. FOLFOX-4 regimen or single-agent gemcitabine as first-line chemotherapy in advanced biliary tract cancer. Am J Clin Oncol 2013; 36 (05) 466-471
  • 89 He S, Shen J, Sun X, Liu L, Dong J. A phase II FOLFOX-4 regimen as second-line treatment in advanced biliary tract cancer refractory to gemcitabine/cisplatin. J Chemother 2014; 26 (04) 243-247
  • 90 Okamoto K, Miyoshi K, Murawaki Y. miR-29b, miR-205 and miR-221 enhance chemosensitivity to gemcitabine in HuH28 human cholangiocarcinoma cells. PLoS ONE 2013; 8 (10) e77623
  • 91 Chen L, Yan HX, Yang W. , et al. The role of microRNA expression pattern in human intrahepatic cholangiocarcinoma. J Hepatol 2009; 50 (02) 358-369
  • 92 Lampis A, Carotenuto P, Vlachogiannis G. , et al. MIR21 drives resistance to heat shock protein 90 inhibition in cholangiocarcinoma. Gastroenterology 2018; 154 (04) 1066-1079.e5
  • 93 Shirota T, Ojima H, Hiraoka N. , et al. Heat shock protein 90 is a potential therapeutic target in cholangiocarcinoma. Mol Cancer Ther 2015; 14 (09) 1985-1993
  • 94 Lin H, Kolosenko I, Björklund AC. , et al. An activated JAK/STAT3 pathway and CD45 expression are associated with sensitivity to Hsp90 inhibitors in multiple myeloma. Exp Cell Res 2013; 319 (05) 600-611
  • 95 Acquaviva J, He S, Zhang C. , et al. FGFR3 translocations in bladder cancer: differential sensitivity to HSP90 inhibition based on drug metabolism. Mol Cancer Res 2014; 12 (07) 1042-1054
  • 96 Johnston M, Geoffroy MC, Sobala A, Hay R, Hutvagner G. HSP90 protein stabilizes unloaded argonaute complexes and microscopic P-bodies in human cells. Mol Biol Cell 2010; 21 (09) 1462-1469
  • 97 Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 2017; 16 (03) 203-222
  • 98 Rupaimoole R, Wu SY, Pradeep S. , et al. Hypoxia-mediated downregulation of miRNA biogenesis promotes tumour progression. Nat Commun 2014; 5: 5202
  • 99 Imig J, Brunschweiger A, Brümmer A. , et al. miR-CLIP capture of a miRNA targetome uncovers a lincRNA H19-miR-106a interaction. Nat Chem Biol 2015; 11 (02) 107-114
  • 100 van Zandwijk N, Pavlakis N, Kao SC. , et al. Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol 2017; 18 (10) 1386-1396
  • 101 Janssen HL, Reesink HW, Lawitz EJ. , et al. Treatment of HCV infection by targeting microRNA. N Engl J Med 2013; 368 (18) 1685-1694
  • 102 Hong DS, Kang YK, Brenner AJ. , et al. MRX34, a liposomal miR-34mimic, in patients with advanced solid tumors: final dose-escalation results from a first-in-human phase I trial of microRNA therapy. J Clin Oncol 2016; 34: 2508
  • 103 Han Y, Meng F, Venter J. , et al. miR-34a-dependent overexpression of Per1 decreases cholangiocarcinoma growth. J Hepatol 2016; 64 (06) 1295-1304
  • 104 Hahne JC, Valeri N. Non-coding RNAs and resistance to anticancer drugs in gastrointestinal tumors. Front Oncol 2018; 8: 226
  • 105 Yang H, Li TW, Peng J. , et al. A mouse model of cholestasis-associated cholangiocarcinoma and transcription factors involved in progression. Gastroenterology 2011; 141 (01) 378-388 , 388.e1–388.e4
  • 106 Zhong XY, Yu JH, Zhang WG. , et al. MicroRNA-421 functions as an oncogenic miRNA in biliary tract cancer through down-regulating farnesoid X receptor expression. Gene 2012; 493 (01) 44-51
  • 107 Ehrlich L, Hall C, Venter J. , et al. miR-24 inhibition increases menin expression and decreases cholangiocarcinoma proliferation. Am J Pathol 2017; 187 (03) 570-580
  • 108 Qiao P, Li G, Bi W, Yang L, Yao L, Wu D. microRNA-34a inhibits epithelial mesenchymal transition in human cholangiocarcinoma by targeting Smad4 through transforming growth factor-beta/Smad pathway. BMC Cancer 2015; 15: 469
  • 109 Zhang J, Han C, Zhu H, Song K, Wu T. miR-101 inhibits cholangiocarcinoma angiogenesis through targeting vascular endothelial growth factor (VEGF). Am J Pathol 2013; 182 (05) 1629-1639
  • 110 Zeng B, Li Z, Chen R. , et al. Epigenetic regulation of miR-124 by hepatitis C virus core protein promotes migration and invasion of intrahepatic cholangiocarcinoma cells by targeting SMYD3. FEBS Lett 2012; 586 (19) 3271-3278
  • 111 Yang R, Chen Y, Tang C. , et al. MicroRNA-144 suppresses cholangiocarcinoma cell proliferation and invasion through targeting platelet activating factor acetylhydrolase isoform 1b. BMC Cancer 2014; 14: 917
  • 112 Peng F, Jiang J, Yu Y. , et al. Direct targeting of SUZ12/ROCK2 by miR-200b/c inhibits cholangiocarcinoma tumourigenesis and metastasis. Br J Cancer 2013; 109 (12) 3092-3104
  • 113 An F, Yamanaka S, Allen S. , et al. Silencing of miR-370 in human cholangiocarcinoma by allelic loss and interleukin-6 induced maternal to paternal epigenotype switch. PLoS ONE 2012; 7 (10) e45606
  • 114 Chen Y, Luo J, Tian R, Sun H, Zou S. miR-373 negatively regulates methyl-CpG-binding domain protein 2 (MBD2) in hilar cholangiocarcinoma. Dig Dis Sci 2011; 56 (06) 1693-1701
  • 115 Iwaki J, Kikuchi K, Mizuguchi Y. , et al. MiR-376c down-regulation accelerates EGF-dependent migration by targeting GRB2 in the HuCCT1 human intrahepatic cholangiocarcinoma cell line. PLoS One 2013; 8 (07) e69496
  • 116 Yamanaka S, Campbell NR, An F. , et al. Coordinated effects of microRNA-494 induce G2/M arrest in human cholangiocarcinoma. Cell Cycle 2012; 11 (14) 2729-2738
  • 117 Cheng Q, Feng F, Zhu L. , et al. Circulating miR-106a is a novel prognostic and lymph node metastasis indicator for cholangiocarcinoma. Sci Rep 2015; 5: 16103
  • 118 McNally ME, Collins A, Wojcik SE. , et al. Concomitant dysregulation of microRNAs miR-151-3p and miR-126 correlates with improved survival in resected cholangiocarcinoma. HPB 2013; 15 (04) 260-264
  • 119 Asukai K, Kawamoto K, Eguchi H. , et al. Micro-RNA-130a-3p regulates gemcitabine resistance via PPARG in cholangiocarcinoma. Ann Surg Oncol 2017; 24 (08) 2344-2352