CC BY-NC-ND 4.0 · Yearb Med Inform 2019; 28(01): 140-151
DOI: 10.1055/s-0039-1677912
Section 6: Knowledge Representation and Management
Survey
Georg Thieme Verlag KG Stuttgart

Enhancing Clinical Data and Clinical Research Data with Biomedical Ontologies - Insights from the Knowledge Representation Perspective

Jonathan P. Bona
1   University of Arkansas for Medical Sciences, Arkansas, USA
,
Fred W. Prior
1   University of Arkansas for Medical Sciences, Arkansas, USA
,
Meredith N. Zozus
1   University of Arkansas for Medical Sciences, Arkansas, USA
,
Mathias Brochhausen
1   University of Arkansas for Medical Sciences, Arkansas, USA
› Author Affiliations
Further Information

Publication History

Publication Date:
16 August 2019 (online)

Summary

Objectives: There exists a communication gap between the biomedical informatics community on one side and the computer science/artificial intelligence community on the other side regarding the meaning of the terms “semantic integration" and “knowledge representation“. This gap leads to approaches that attempt to provide one-to-one mappings between data elements and biomedical ontologies. Our aim is to clarify the representational differences between traditional data management and semantic-web-based data management by providing use cases of clinical data and clinical research data re-representation. We discuss how and why one-to-one mappings limit the advantages of using Semantic Web Technologies (SWTs).

Methods: We employ commonly used SWTs, such as Resource Description Framework (RDF) and Ontology Web Language (OWL). We reuse pre-existing ontologies and ensure shared ontological commitment by selecting ontologies from a framework that fosters community-driven collaborative ontology development for biomedicine following the same set of principles.

Results: We demonstrate the results of providing SWT-compliant re-representation of data elements from two independent projects managing clinical data and clinical research data. Our results show how one-to-one mappings would hinder the exploitation of the advantages provided by using SWT.

Conclusions: We conclude that SWT-compliant re-representation is an indispensable step, if using the full potential of SWT is the goal. Rather than providing one-to-one mappings, developers should provide documentation that links data elements to graph structures to specify the re-representation.

 
  • References

  • 1 Blobel B, Oemig F. Why Do We Need an Architectural Approach to Interoperability? Eur J Biomed Inform 2016 May 20;12(1)
  • 2 Cheatham M, Pesquita C. Semantic Data Integration. In: Zomaya AY, Sakr S. editors. Handbook of Big Data Technologies. Cham: Springer International Publishing; 2017: 263-305
  • 3 Niles I, Pease A. Towards a standard upper ontology. In: Proceedings of the International Conference on Formal Ontology in Information Systems (FOIS) - Volume 2001. New York, NY, USA: ACM; 2001. p. 2-9
  • 4 Hitzler P, Krötzsch M, Parsia B, Patel-Schneider PF, Rudolph S. OWL 2 Web Ontology Language Primer (Second Edition). 2012 Dec 11;65
  • 5 OWL 2 Web Ontology Language Document Overview (Second Edition). 2012 Dec 11;7
  • 6 Brochhausen M, Bona J, Blobel B. The role of axiomatically-rich ontologies in transforming medical data to knowledge. Stud Health Technol Inform 2018; 249: 38-49
  • 7 Hunter G. Metalogic: An Introduction to the Metatheory of Standard First Order Logic. Berkeley: University of California Press; 1973
  • 8 Utecht J, Brochhausen M, Judkins J, Schneider J, Boyce RD. Formalizing evidence type definitions for drug-drug interaction studies to improve evidence base curation. Stud Health Technol Inform 2017; 245: 960-4
  • 9 International Health Terminology Standards Development Organisation. SNOMED CT Compositional Grammar v2.3.1 Specification and Guide [Internet]. 2016 [cited 2019 Apr 24]. Available from: https://confluence.ihtsdotools.org/display/DOCSCG
  • 10 Minarro-Gimenez JA, Martinez-Costa C, Karlsson D, Schulz S, Goeg KR. Qualitative analysis of manual annotations of clinical text with SNOMED CT. PLoS One 2018;13(12)
  • 11 Rosenbloom ST, Carroll RJ, Warner JL, Matheny ME, Denny JC. Representing Knowledge Consistently Across Health Systems. Yearb Med Inform 2017; 26 (01) 139-47
  • 12 Overhage JM, Ryan PB, Reich CG, Hartzema AG, Stang PE. Validation of a common data model for active safety surveillance research. J Am Med Inform Assoc 2012; 19 (01) 54-60
  • 13 Fitz Henry F, Resnic FS, Robbins SL, Denton J, Nookala L, Meeker D. , et al. Creating a Common Data Model for Comparative Effectiveness with the Observational Medical Outcomes Partnership. Appl Clin Inform 2015; 6 (03) 536-47
  • 14 Collins FS, Hudson KL, Briggs JP, Lauer MS. PCORnet: turning a dream into reality. J Am Med Inform Assoc 2014; 21 (04) 576-7
  • 15 Fleurence RL, Curtis LH, Califf RM, Platt R, Selby JV, Brown JS. Launching PCORnet, a national patient-centered clinical research network. J Am Med Inform Assoc 2014; 21 (04) 578-82
  • 16 Bender D, Sartipi K. HL7 FHIR: An Agile and RESTful approach to healthcare information exchange. In: Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems; 2013. p. 326-31
  • 17 Davi R, Shrobe H, Szolovits P. What Is a Knowledge Representation?. AI Mag 1993; 14 (01) 17
  • 18 Martinez-Costa C, Schulz S. HL7 FHIR: Ontological Reinterpretation of Medication Resources. Stud Health Technol Inform 2017; 235: 451-5
  • 19 Chiang MF, Hwang JC, Yu AC, Casper DS, Cimino JJ, Starren J. Reliability of SNOMED- CT Coding by Three Physicians using Two Terminology Browsers. AMIA Annu Symp Proc 2006; 2006: 131-5
  • 20 Andrews JE, Richesson RL, Krischer J. Variation of SNOMED CT Coding of Clinical Research Concepts among Coding Experts. J Am Med Inform Assoc 2007; 14 (04) 497-506
  • 21 Czwikla J, Domhoff D, Giersiepen K. [ICD coding quality for outpatient cancer diagnoses in SHI claims data]. Z Evidenz Fortbild Qual Im Gesundheitswesen 2016; 118-119: 48-55
  • 22 Gologorsky Y, Knightly JJ, Chi JH, Groff MW. The Nationwide Inpatient Sample database does not accurately reflect surgical indications for fusion. J Neurosurg Spine 2014; 21 (06) 984-93
  • 23 McKenzie K, Enraght-Moony El, Waller G, Walker SM, Harrison JE, McClure RJ. Causes of injuries resulting in hospitalisation in Australia: assessing coder agreement on external causes. Inj Prev 2009; 15 (03) 188-96
  • 24 Berners-Lee T, Hendler J. Publishing on the semantic web. Nature 2001; 410: 1023-4
  • 25 RDF - Semantic Web Standards [Internet]. [cited 2019 Jan 17]. Available from: https://www.w3.org/RDF/
  • 26 Ruttenberg A, Clark T, Bug W, Samwald M, Bodenreider O, Chen H. , et al. Advancing translational research with the Semantic Web. BMC Bioinformatics 2007; 8 (Suppl 3): S2
  • 27 Antoniou G, Groth P, van Harmelen F, Hoekstra R. A Semantic Web primer. MIT Press; 2012
  • 28 Berners-Lee T, Fielding R, Masinter L. RFC 3986 Uniform Resource Identifier (URI): Generic Syntax [Internet]. 2005 [cited 2019 Jan 17]. Available from: http://www.rfc-editor.org/rfc/rfc3986.txt
  • 29 RDFS - Semantic Web Standards [Internet]. [cited 2019 Jan 17]. Available from: https://www.w3.org/2001/sw/wiki/RDFS
  • 30 OWL - Semantic Web Standards [Internet]. [cited 2019 Jan 17]. Available from: https://www.w3.org/OWL/
  • 31 Mate S, Köpcke F, Toddenroth D, Martin M, Prokosch HU, Bürkle T. , et al. Ontology-Based Data Integration between Clinical and Research Systems. PLoS One 2015 Jan 14;10(1)
  • 32 Brochhausen M, Zheng J, Birtwell D, Williams H, Masci AM, Ellis HJ. , et al. OBIB-a novel ontology for biobanking. J Biomed Semant 2016; 7 (01) 23
  • 33 Noor A, Assiri A, Ayvaz S, Clark C, Dumontier M. Drug-drug interaction discovery and demystification using Semantic Web technologies. J Am Med Inform Assoc 2017; 24 (03) 556-64
  • 34 Herrero-Zazo M, Segura-Bedmar I, Hastings J, Martinez P. DINTO: Using OWL Ontologies and SWRL Rules to Infer Drug-Drug Interactions and Their Mechanisms. J Chem Inf Model 2015; 55 (08) 1698-707
  • 35 Judkins J, Tay-Sontheimer J, Boyce RD, Brochhausen M. Extending the DIDEO ontology to include entities from the natural product drug interaction domain of discourse. J Biomed Semant 2018 May 9;9(15)
  • 36 Herrero-Zazo M, Segura-Bedmar I, Martinez P. Conceptual models of drug-drug interactions: A summary of recent efforts. Knowl-Based Syst 2016; 114: 99-107
  • 37 Shah NH, Jonquet C, Chiang AP, Butte AJ, Chen R, Musen MA. Ontology-driven indexing of public datasets for translational bioinformatics. BMC Bioinformatics 2009; 10 (Suppl 2): S1
  • 38 Hsu W, Gonzalez NR, Chien A, Pablo Villablanca J, Pajukanta P, Vinuela F. , et al. An integrated, ontology-driven approach to constructing observational databases for research. J Biomed Inform 2015; 55: 132-42
  • 39 Cinaglia P, Veltri P, Cannataro M. eMiRo: an ontology-based system for clinical data integration and analysis. In: Proceeding of the 25th Italian Symposium on Advanced Database System (SEBD); 2017. CEUR Workshop Proceedings Vol. 2037
  • 40 Shah NH, Rubin DL, Supekar KS, Musen MA. Ontology-based annotation and query of tissue microarray data. AMIA Annu Symp Proc 2006; 2006: 709-13
  • 41 Brochhausen M, Fransson MN, Kanaskar NV, Eriksson M, Merino-Martinez R, Hall RA. , et al. Developing a semantically rich ontology for the biobank-administration domain. J Biomed Semant 2013; 4 (01) 23-23
  • 42 Simperl E. Reusing ontologies on the Semantic Web: a feasibility study. Data Knowl Eng 2009; 68 (10) 905-25
  • 43 Lonsdale D, Embley DW, Ding Y, Xu L, Hepp M. Reusing ontologies and language components for ontology generation. Data Knowl Eng 2010; 69 (04) 318-30
  • 44 CSV2RDF [Internet]. W3C. 2014 [cited 2019 Apr 29]. Available from: https://www.w3.org/2013/csvw/wiki/CSV2RDF
  • 45 RDB2RDF Working Group. RDB2RDF [Internet]. W3C. 2012 [cited 2019 Apr 29]. Available from: https://www.w3.org/2001/sw/wiki/RDB2RDF
  • 46 Smith B, Ashburner M, Rosse C, Bard J, Bug W, Ceusters W. , et al. The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nat Biotechnol 2007; 25 (11) 1251-5
  • 47 The OBO Foundry [Internet]. [cited 2019 Jan 17]. Available from: http://www.obofoundry.org/
  • 48 Ontobee [Internet]. [cited 2019 Jan 17]. Available from: http://www.ontobee.org/
  • 49 Xiang Z, Mungall C, Ruttenberg A, He Y. Ontobee: a linked data server and browser for ontology terms. In: Bodenreider O, Martone M, Ruttenberg A. editors. Proceedings of the 2nd International Conference on Biomedical Ontology. Buffalo, NY: 2011: 279-81
  • 50 Smith B, Ceusters W. Ontological realism: A methodology for coordinated evolution of scientific ontologies. Appl Ontol 2010; 5 (3-4): 139-88
  • 51 Grenon P, Smith B, Goldberg L. Biodynamic ontology: applying BFO in the biomedical domain. Stud Health Technol Inform 2004; 102: 20-38
  • 52 Grenon P, Smith B. SNAP and SPAN: towards dynamic spatial ontology. Spat Cogn Comput 2004; 4 (01) 69-104
  • 53 Arp R, Smith B, Spear AD. Building ontologies with Basic Formal Ontology. MIT Press; 2015
  • 54 Smith B, Brochhausen M. Putting biomedical ontologies to work. Methods Inf Med 2010; 49 (02) 135-40
  • 55 FAQ: Request an ontology term [Internet]. The OBO Foundry. [cited 2019 Apr 29]. Available from: http://www.obofoundry.org/faq/how-do-i-request-a-term.html
  • 56 Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P. , et al. The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 2013; 26 (06) 1045-57
  • 57 Kalpathy-Cramer J, Freymann JB, Kirby JS, Kinahan PE, Prior FW. Quantitative Imaging Network: data sharing and competitive algorithm validation leveraging The Cancer Imaging Archive. Transl Oncol 2014; 7 (01) 147-52
  • 58 Chennubhotla C, Clarke LP, Fedorov A, Foran D, Harris G, Helton E. , et al. An assessment of imaging informatics for precision medicine in cancer. Yearb Med Inform 2017; 26 (01) 110-9
  • 59 The Cancer Imaging Archive (TCIA) - A growing archive of medical images of cancer [Internet]. The Cancer Imaging Archive (TCIA). [cited 2019 Jan 17]. Available from: http://www.cancerimag-ingarchive.net/
  • 60 Vallieres M, Kay-Rivest E, Perrin LJ, Liem X, Furstoss C, Khaouam N. , et al. Data from Head-Neck-PET-CT [Internet]. The Cancer Imaging Archive; 2017 [cited 2019 Jan 15]. Available from: https://doi.org/10.7937/K9/TCIA.2017.8oje5q00
  • 61 Grossberg A, Mohamed A, Elhalawani H, Bennett W, Smith K, Nolan T. , et al. Data from Head and Neck Cancer CT Atlas [Internet]. The Cancer Imaging Archive; 2017 [cited 2019 Jan 15]. Available from: https://doi.org/10.7937/K9/TCIA.2017.umz8dv6s
  • 62 Snowden J, Darden P, Palumbo P, Saul P, Lee J. The institutional development award states pediatric clinical trials network: building research capacity among the rural and medically underserved. Curr Opin Pediatr 2018; 30 (02) 297-302 (6)
  • 63 Ward RM, Benjamin DK, Davis JM, Gorman RL, Kauffman R, Kearns GL. , et al. The Need for Pediatric Drug Development. J Pediatr 2018; 192: 13-21
  • 64 Gillman MW, Blaisdell CJ. Environmental influences on Child Health Outcomes, a research program of the National Institutes of Health. Curr Opin Pediatr 2018; 30 (02) 260-2
  • 65 Smith B, Knox S, Benjamin DK. Coordination of the Environmental influences on Child Health Outcomes program: so the whole is greater than the sum of its parts. Curr Opin Pediatr 2018; 30 (02) 263-8
  • 66 Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V. , et al. ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res 2016; 44 (Database issue): D1214-9
  • 67 Hanna J, Joseph E, Brochhausen M, Hogan WR. Building a drug ontology based on RxNorm and other sources. J Biomed Semant 2013; 4 (44) 9
  • 68 Hanna J, Bian J, Hogan WR. An accurate and precise representation of drug ingredients. J Biomed Semant 2016; 7 (07) 9
  • 69 Hogan WR, Hanna J, Hicks A, Amirova S, Bramblett B, Diller M. , et al. Therapeutic indications and other use-case-driven updates in the drug ontology: anti-malarials, anti-hypertensives, opioid analgesics, and a large term request. J Biomed Semant 2017 Mar 3;8