CC BY-NC-ND 4.0 · Yearb Med Inform 2019; 28(01): 083-094
DOI: 10.1055/s-0039-1677915
Section 3: Clinical Information Systems
Survey
Georg Thieme Verlag KG Stuttgart

Clinical Information Systems and Artificial Intelligence: Recent Research Trends

Carlo Combi
1   Dipartimento di Informatica, Università degli Studi di Verona, Verona, Italy
,
Giuseppe Pozzi
2   Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
› Author Affiliations
Further Information

Publication History

Publication Date:
16 August 2019 (online)

Summary

Objectives: This survey aims at reviewing the literature related to Clinical Information Systems (CIS), Hospital Information Systems (HIS), Electronic Health Record (EHR) systems, and how collected data can be analyzed by Artificial Intelligence (AI) techniques.

Methods: We selected the major journals (11 journals) collecting papers (more than 7,000) over the last five years from the top members of the research community, and read and analyzed the papers (more than 200) covering the topics. Then, we completed the analysis using search engines to also include papers from major conferences over the same five years.

Results: We defined a taxonomy of major features and research areas of CIS, HIS, EHR systems. We also defined a taxonomy for the use of Artificial Intelligence (AI) techniques on healthcare data. In the light of these taxonomies, we report on the most relevant papers from the literature.

Conclusions: We highlighted some major research directions and issues which seem to be promising and to need further investigations over a medium- or long-term period.

 
  • References

  • 1 Degoulet P, Luna D, Quiros FG. Chapter 6 - Clinical Information Systems. In: Fatima Marin H, Massad E, Gutierrez MA, Rodrigues RJ, Sigulem D. editors. Global Health Informatics. Academic Press; 2017: 129-51
  • 2 Viceconti M, Hunter PJ, Hose RD. Big Data, Big Knowledge: Big Data for Personalized Healthcare. IEEE J Biomed Health Inform 2015; 19 (04) 1209-15
  • 3 Combi C. Editorial from the new Editor-in-Chief: Artificial Intelligence in Medicine and the forthcoming challenges. Artif Intell Med 2017; 76: 37-9
  • 4 Bisaso KR, Anguzu GT, Karungi SA, Kiragga A, Castelnuovo B. A survey of machine learning applications in HIV clinical research and care. Comput Biol Med 2017; 91: 366-71
  • 5 Shickel B, Tighe P, Bihorac A, Rashidi P. Deep EHR: A Survey of Recent Advances in Deep Learning Techniques for Electronic Health Record (EHR) Analysis. IEEE J Biomed Health Inform 2018; 22 (05) 1589-604
  • 6 Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 2009; 339
  • 7 Dixon BE, Zafar A, McGowan JJ. Development of a Taxonomy for Health Information Technology. MEDINFO 2007 - Proceedings of the 12th World Congress on Health (Medical) Informatics - Building Sustainable Health Systems, 20-24 August, 2007, Brisbane, Australia; 2007. p. 616-20
  • 8 Meulendijks A, Batenburg R, Wetering R. A classification framework for clinical information system implementation in hospitals. International Journal of Organisational Design and Engineering 2012; 2: 402-19
  • 9 Chiu HW, Li YC. Improving healthcare management with data science. Comput Methods Programs Biomed 2018; 154: A1
  • 10 Mehta N, Pandit A. Concurrence of big data analytics and healthcare: A systematic review. Int J Med Inform 2018; 114: 57-65
  • 11 Pérez JA, Poon CC, Merrifield RD, Wong ST, Yang GZ. IEEE. J Biomed Health Inform 2015; 19 (04) 1193-208
  • 12 Ravi D, Wong C, Deligianni F, Berthelot M, Pérez JA, Lo B. , et al. Deep Learning for Health Informatics IEEE. J Biomed Health Inform 2017; 21 (01) 4-21
  • 13 Yang CC, Veltri P. Intelligent healthcare informatics in big data era. Artif Intell Med 2015; 65 (02) 75-7
  • 14 Kavuluru R, Rios A, Lu Y. An empirical evaluation of supervised learning approaches in assigning diagnosis codes to electronic medical records. Artif Intell Med 2015; 65 (02) 155-66
  • 15 Parimbelli E, Marini S, Sacchi L, Bellazzi R. Patient similarity for precision medicine: A systematic review. J Biomed Inform 2018; 83: 87-96
  • 16 Lara JA, Lizcano D, Pérez-Pérez A, Valente JP. A general framework for time series data mining based on event analysis: Application to the medical domains of electroencephalography and stabilometry. J Biomed Inform 2014; 51: 219-41
  • 17 Kipnis P, Turk BJ, Wulf DA, LaGuardia JC, Liu V, Churpek MM, Romeroet AL. Development and validation of an electronic medical record-based alert score for detection of inpatient deterioration outside the ICU. J Biomed Inform 2016; 64: 10-9
  • 18 Monsalve-Torra A, Fernández DR, Marin-Alonso O, Payá AS, Camacho-Mackenzie J, Carreño-Jaimes M. Using machine learning methods for predicting inhospital mortality in patients undergoing open repair of abdominal aortic aneurysm. J Biomed Inform 2016; 62: 195-201
  • 19 Bourne PE, Bonazzi V, Dunn M, Green ED, Guyer M, Komatsoulis GA. , et al. The NIH Big Data to Knowledge (BD2K) initiative. J Am Med Inform Assoc 2015; 22 (06) 1114
  • 20 Margolis R, Derr L, Dunn M, Huerta MF, Larkin J, Sheehan J. , et al. The National Institutes of Health’s Big Data to Knowledge (BD2K) initiative: capitalizing on biomedical big data. J Am Med Inform Assoc 2014; 21 (06) 957-8
  • 21 Brisimi TS, Chen R, Mela T, Olshevsky A, Paschalidis IC, Shi W. Federated learning of predictive models from federated Electronic Health Records. Int J Med Inform 2018; 112: 59-67
  • 22 Lo CM, Li YC. Machine learning based cancer detection using various image modalities. Comput Methods Programs Biomed 2018; 156: A1
  • 23 Frey LJ, Bernstam EV, Denny JC. Precision medicine informatics. J Am Med Inform Assoc 2016; 23 (04) 668-70
  • 24 Swain MJ, Kharrazi H. Feasibility of 30-day hospital readmission prediction modeling based on health information exchange data. Int J Med Inform 2015; 84 (12) 1048-56
  • 25 Turgeman L, May JH. A mixed-ensemble model for hospital readmission. Artif Intell Med 2016; 72: 72-82
  • 26 Zhao J, Papapetrou P, Asker L, Bostrom H. Learning from heterogeneous temporal data in electronic health records. J Biomed Inform 2017; 65: 105-19
  • 27 Miotto R, Weng C. Case-based reasoning using electronic health records efficiently identifies eligible patients for clinical trials. J Am Med Inform Assoc 2015; 22 (e1): e141-50
  • 28 Moskovitch R, Polubriaginof F, Weiss A, Ryan PB, Tatonetti NP. Procedure prediction from symbolic Electronic Health Records via time intervals analytics. J Biomed Inform 2017; 75: 70-82
  • 29 Shknevsky A, Shahar Y, Moskovitch R. Consistent discovery of frequent interval-based temporal patterns in chronic patients’ data. J Biomed Inform 2017; 75: 83-95
  • 30 Zhang X, Kim J, Patzer RE, Pitts SR, Patzer A, Schrager JD. Prediction of Emergency Department Hospital Admission Based on Natural Language Processing and Neural Networks. Methods Inf Med 2017; 56 (05) 377-89
  • 31 Bennett P, Hardiker NR. The use of computerized clinical decision support systems in emergency care: a substantive review of the literature. J Am Med Inform Assoc 2017; 24 (03) 655-68
  • 32 Ohno-Machado L. Focusing on the patient: mHealth, social media, electronic health records, and decision support systems. J Am Med Inform Assoc 2014; 21 (06) 953
  • 33 Wright A, Ai A, Ash JS, Wiesen J, Hickman TT, Aaron S. , et al. Clinical decision support alert malfunctions: analysis and empirically derived taxonomy. J Am Med Inform Assoc 2018; 25 (05) 496-506
  • 34 Rahulamathavan Y, Veluru S, Phan RCW, Chambers JA, Rajarajan M. Privacy-Preserving Clinical Decision Support System Using Gaussian Kernel-Based Classification. IEEE J Biomed Health Inform 2014; 18 (01) 56-66
  • 35 Yoon J, Davtyan C, Schaar M. Discovery and Clinical Decision Support for Personalized Healthcare. IEEE J Biomed Health Inform 2017; 21 (04) 1133-45
  • 36 Kreimeyer K, Foster M, Pandey A, Arya N, Halford G, Jones SF. , et al. Natural language processing systems for capturing and standardizing unstructured clinical information: A systematic review. J Biomed Inform 2017; 73: 14-29
  • 37 Ford E, Carroll JA, Smith HE, Scott D, Cassell J. Extracting information from the text of electronic medical records to improve case detection: a systematic review. J Am Med Inform Assoc 2016; 23 (05) 1007-15
  • 38 Wang Y, Luo J, Hao S, Xu H, Shin AY, Jin B. , et al. NLP based congestive heart failure case finding: A prospective analysis on statewide electronic medical records. Int J Med Inform 2015; 84 (12) 1039-47
  • 39 Goldstein A, Shahar Y, Orenbuch E, Cohen MJ. Evaluation of an automated knowledge-based textual summarization system for longitudinal clinical data, in the intensive care domain. Artif Intell Med 2017; 82: 20-33
  • 40 Agarwal A, Baechle C, Behara RS, Zhu X. A Natural Language Processing Framework for Assessing Hospital Readmissions for Patients With COPD. IEEE J Biomed Health Inform 2018; 22 (02) 588-96
  • 41 Safari L, Patrick JD. Complex analyses on clinical information systems using restricted natural language querying to resolve time-event dependencies. J Biomed Inform 2018; 82: 13-30
  • 42 Combi C, Gambini M, Migliorini S, Posenato R. Representing Business Processes Through a Temporal Data-Centric Workflow Modeling Language: An Application to the Management of Clinical Pathways. IEEE Trans Syst Man Cybern Syst 2014; 1182-203
  • 43 Combi C, Oliboni B, Zardini A, Zerbato F. A Methodological Framework for the Integrated Design of Decision-Intensive Care Pathways_an Application to the Management of COPD Patients. J Healthc Inform Res 2017; 1: 157-217
  • 44 Rojas E, Munoz-Gama J, Sepulveda M, Capurro D. Process mining in healthcare: A literature review. J Biomed Inform 2016; 61: 224-36
  • 45 Huang Z, Dong W, Ji L, Gan C, Lu X, Duan H. Discovery of clinical pathway patterns from event logs using probabilistic topic models. J Biomed Inform 2014; 47: 39-57
  • 46 Gotz D, Wang F, Perer A. A methodology for interactive mining and visual analysis of clinical event patterns using electronic health record data. J Biomed Inform 2014; 48: 148-59
  • 47 Zhang Y, Padman R, Patel N. Paving the COWpath: Learning and visualizing clinical pathways from electronic health record data. J Biomed Inform 2015; 58: 186-97
  • 48 Dupont D, Beresniak A, Sundgren M, Schmidt A, Ainsworth JD, Coorevits P. , et al. Business analysis for a sustainable, multi-stakeholder ecosystem for leveraging the Electronic Health Records for Clinical Research (EHR4CR) platform in Europe. Int J Med Inform 2017; 97: 341-52