CC BY-NC-ND 4.0 · Yearb Med Inform 2019; 28(01): 218-222
DOI: 10.1055/s-0039-1677937
Section 10: Natural Language Processing
Synopsis
Georg Thieme Verlag KG Stuttgart

A Year of Papers Using Biomedical Texts: Findings from the Section on Natural Language Processing of the IMIA Yearbook

Natalia Grabar
1   LIMSI, CNRS, Université Paris-Saclay, Orsay, France
2   STL, CNRS, Université de Lille, Villeneuve-d'Ascq, France
,
Cyril Grouin
1   LIMSI, CNRS, Université Paris-Saclay, Orsay, France
,
Section Editors for the IMIA Yearbook Section on Natural Language Processing › Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
16. August 2019 (online)

Summary

Objectives: To analyze the content of publications within the medical Natural Language Processing (NLP) domain in 2018.

Methods: Automatic and manual pre-selection of publications to be reviewed, and selection of the best NLP papers of the year. Analysis of the important issues.

Results: Two best papers have been selected this year. One dedicated to the generation of multi- documents summaries and another dedicated to the generation of imaging reports. We also proposed an analysis of the content of main research trends of NLP publications in 2018.

Conclusions: The year 2018 is very rich with regard to NLP issues and topics addressed. It shows the will of researchers to go towards robust and reproducible results. Researchers also prove to be creative for original issues and approaches.

 
  • References

  • 1 Friedman C, Hripcsak G. Natural Language Processing and its future in medicine. Acad Med 1999; 74 (08) 890-5
  • 2 Nadkarni PM, Ohno-Machado L, Chapman WW. Natural Language Processing: an introduction. J Am Med Inform Assoc 2011; 18: 544-51
  • 3 Moradi M. CIBS: A biomedical text summarizer using topic-based sentence clustering. J Biomed Inform 2018; 88: 53-61
  • 4 Jing B, Xie P, Xing E. On the automatic generation of medical imaging reports. Proc of ACL 2018. Melbourne, Australia; 2018. p. 2577-86
  • 5 Miao S, Xu T, Wu Y, Xie H, Wang J, Jing S. , et al. Extraction of birads findings from breast ultrasound reports in Chinese using deep learning approaches. Int J Med Inform 2018; 119: 17-21
  • 6 Viani N, Larizza C, Tibollo V, Napolitano C, Priori S, Bellazzi R. , et al. Information extraction from Italian medical reports: An ontology-driven approach. Int J Med Inform 2018; 111: 140-8
  • 7 Tvardik N, Kergourlay I, Bittar A, Segond F, Darmoni S, Metzger MH. Accuracy of using natural language processing methods for identifying healthcare-associated infections. Int J Med Inform 2018; 117: 96-102
  • 8 Garcelon N, Neuraz A, Salomon R, Bahi-Buisson N, Amiel J, Picard C. , et al. Next generation phenotyping using narrative reports in a rare disease clinical data warehouse. Orphanet J Rare Dis 2018; 13 (01) 85
  • 9 Usui M, Aramaki E, Iwao T, Wakammiya S, Sakamoto T, Mochizuki M. Extraction and standardization of patient complaints from electronic medication histories for pharmacovigilance: Natural language processing analysis in Japanese. JMIR Med Inform 2018; 6 (03) e11021
  • 10 Lee W, Choi J. Temporal segmentation for capturing snapshots of patient histories in Korean clinical narrative. Health Inform Res 2018; 24 (03) 179-86
  • 11 Kloehn N, Leroy G, Kauchak D, Gu Y, Colina S, Yuan N. , et al. Improving consumer understanding of medical text: Development and validation of a new subsimplify algorithm to automatically generate term explanations in English and Spanish. J Med Internet Res 2018; 20 (08) e10779
  • 12 Lohr C, Buechel S, Hahn U. Sharing copies of synthetic clinical corpora without physical distribution - a case study to get around IPRs and privacy constraints featuring the German JSYNCC corpus. In: Proc of LREC; 2018. p. 1259-66
  • 13 Grabar N, Claveau V, Dalloux C. Cas: French corpus with clinical cases. In: Proc of LOUHI 2018. p. 1-12
  • 14 Munkhdalai T, Liu F, Yu H. Clinical relation extraction toward drug safety surveillance using electronic health record narratives: Classical learning versus deep learning. JMIR Public Health Surveill 2018; 4 (02) 29-40
  • 15 Wang Z, Qu Y, Chen L, Shen J, Zhang W, Zhang S. , et al. Label-aware double transfer learning for cross-specialty medical named entity recognition. In: Proc of NAACL-HLT; 2018. p. 1-15
  • 16 Beltrami D, Gagliardi G, Favretti RR, Ghidoni E, Tamburini F, Calza L. Speech analysis by natural language processing techniques: A possible tool for very early detection of cognitive decline?. Front Aging Neurosci 2018; 10: 369
  • 17 Chen J, Druhl E, Ramesh BP, Houston TK, Brandt CA, Zulman DM. , et al. A natural language processing system that links medical terms in electronic health record notes to lay definitions: System development using physician reviews. J Med Internet Res 2018; 20 (01) 1-15
  • 18 Sarker A, Gonzalez-Hernandez G. An unsupervised and customizable misspelling generator for mining noisy health-related text sources. J Biomed Inform 2018; 88: 98-107
  • 19 Simpson S, Aadams N, Brugman C, Conners T. Detecting novel and emerging drug terms using natural language processing: A social media corpus study. JMIR Public Health Surveill 2018; 4 (01) e2
  • 20 Bakal G, Talari P, Kakani E, Kavuluru R. Exploiting semantic patterns over biomedical knowledge graphs for predicting treatment and causative relations. J Biomed Inform 2018; 82: 189-99
  • 21 Duque A, Stevenson M, Martinez-Romo J, Araujo L. Co-occurrence graphs for word sense disambiguation in the biomedical domain. Artif Intell Med 2018; 87: 9-19
  • 22 Wang Y, Liu S, Afzal N, Rastegar-Mojarad M, Wang L, Shen F. , et al. A comparison of word embeddings for the biomedical natural language processing. J Biomed Inform 2018; 87: 12-20
  • 23 Henry S, Cuffy C, McInnes B. Vector representations of multi-word terms for semantic relatedness. J Biomed Inform 2018; 77: 111-19
  • 24 Alsuhaibani M, Bollegala D, Maehara T, Kawarabayashi K. Jointly learning word embeddings using a corpus and a knowledge base. PLoS One 2018; 13 (03) e0193094
  • 25 Wong J, Horwitz M, Zhou L, Toh S. Using machine learning to identify health outcomes from electronic health record data. Curr Epidemiol Rep 2018; 5 (04) 331-42
  • 26 Li F, Liu W, Yu H. Extraction of information related to adverse drug events from electronic health record notes: Design of an end-to-end model based on deep learning. JMIR Med Inform 2018; 6 (04) 12159-70
  • 27 Combi C, Zorzi M, Pozzani G, Moretti U, Arzenton E. From narrative descriptions to meddra: automagically encoding adverse drug reactions. J Biomed Inform 2018; 84: 184-99
  • 28 Leroy G, Gu Y, Pettygrove S, Galindo M, Arora A, Kurzius-Spencer M. Automated extraction of diagnostic criteria from electronic health records for autism spectrum disorders: Development, evaluation, and application. J Med Internet Res 2018; 20 (11) 10497
  • 29 Weissman G, Ungar L, Harhay M, Courtright K, Halpern S. Construct validity of six sentiment analysis methods in the text of encounter notes of patients with critical illness. J Biomed Inform 2019; 89: 114-21
  • 30 Gabriel R, Kuo T, McAuley J, Hsu C. Identifying and characterizing highly similar notes in big clinical note datasets. J Biomed Inform 2018; 82: 63-9
  • 31 Tutubalina E, Miftahudinov Z, Nikolenko S, Malykh V. Medical concept normalization in social media posts with recurrent neural networks. J Biomed Inform 2018; 84: 93-102
  • 32 Coppersmith G, Leary R, Crutcheley P, Fine A. Natural language processing of social media as screening for suicide risk. Biomed Inform Insights 2018; 10: 1178222618792860
  • 33 Klein A, Sarker A, Cai H, Weissenbacher D, Gonzalez-Hernandez G. Social media mining for birth defects research: A rule-based, bootstrapping approach to collecting data for rare health-related events on Twitter. J Biomed Inform 2018; 87: 68-78
  • 34 Jones J, Pradhan M, Hosseini M, Kulanthaivel A, Hosseini M. Novel approach to cluster patient-generated data into actionable topics: Case study of a web-based breast cancer forum. JMIR Med Inform 2018; 6 (04) e45