Semin Neurol 2019; 39(02): 188-199
DOI: 10.1055/s-0039-1678580
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Neuroimaging in Dementias

Sowmya Mahalingam
1   Department of Radiology of Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
Ming-Kai Chen
1   Department of Radiology of Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
› Author Affiliations
Further Information

Publication History

Publication Date:
29 March 2019 (online)


Dementia is a global health issue, the burden of which will worsen with an increasingly aging population. Alzheimer's disease (AD) is the most common dementia, with 50 to 60% of all dementias attributable to AD alone, while the rest are mostly due to frontotemporal lobar dementia, dementia with Lewy bodies, Parkinson's disease dementia, and vascular dementia. Diagnosis of dementias is made clinically with the aid of other testing modalities including neuroimaging. While the role of imaging has traditionally been to exclude reversible causes of dementia, positron emission tomography (PET) with 18-fluorine fluorodeoxyglucose and magnetic resonance imaging now are increasingly used more for definitive diagnosis of dementia in the prodromal stages and to aid with formulating the differential diagnoses. Introduction of molecular imaging modalities such as amyloid PET and tau PET have improved diagnostic certainty in the clinical trial setting and promise to find their way into the clinic in the near future. In this review, we will focus on the multimodality imaging of dementias especially AD and its differential diagnoses.

  • References

  • 1 Wortmann M. Dementia: a global health priority - highlights from an ADI and World Health Organization report. Alzheimers Res Ther 2012; 4 (05) 40
  • 2 Brown RK, Bohnen NI, Wong KK, Minoshima S, Frey KA. Brain PET in suspected dementia: patterns of altered FDG metabolism. Radiographics. 2014; 34 (03) 684-701
  • 3 Scheltens P, Blennow K, Breteler MM. , et al. Alzheimer's disease. Lancet 2016; 388 (10043): 505-517
  • 4 Jack Jr CR, Knopman DS, Weigand SD. , et al. An operational approach to National Institute on Aging-Alzheimer's Association criteria for preclinical Alzheimer disease. Ann Neurol 2012; 71 (06) 765-775
  • 5 Jack Jr CR. Alzheimer disease: new concepts on its neurobiology and the clinical role imaging will play. Radiology 2012; 263 (02) 344-361
  • 6 Farias ST, Mungas D, Reed BR, Harvey D, DeCarli C. Progression of mild cognitive impairment to dementia in clinic- vs community-based cohorts. Arch Neurol 2009; 66 (09) 1151-1157
  • 7 Menendez-Gonzalez M, Calatayud MT, Blazquez-Menes B. Exacerbation of Lewy bodies dementia due to memantine. J Alzheimers Dis 2005; 8 (03) 289-291
  • 8 Whitwell JL, Weigand SD, Shiung MM. , et al. Focal atrophy in dementia with Lewy bodies on MRI: a distinct pattern from Alzheimer's disease. Brain 2007; 130 (Pt 3): 708-719
  • 9 Jack Jr CR, Knopman DS, Jagust WJ. , et al. Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 2013; 12 (02) 207-216
  • 10 Villemagne VL, Chételat G. Neuroimaging biomarkers in Alzheimer's disease and other dementias. Ageing Res Rev 2016; 30: 4-16
  • 11 Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991; 82 (04) 239-259
  • 12 Villemagne VL, Doré V, Bourgeat P. , et al. Aβ-amyloid and Tau imaging in dementia. Semin Nucl Med 2017; 47 (01) 75-88
  • 13 Jack Jr CR, Holtzman DM. Biomarker modeling of Alzheimer's disease. Neuron 2013; 80 (06) 1347-1358
  • 14 Baron JC, Chételat G, Desgranges B. , et al. In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer's disease. Neuroimage 2001; 14 (02) 298-309
  • 15 Cavanna AE, Trimble MR. The precuneus: a review of its functional anatomy and behavioural correlates. Brain 2006; 129 (Pt 3): 564-583
  • 16 Kobayashi Y. Neuroanatomy of the parietal association areas [in Japanese]. Brain Nerve 2016; 68 (11) 1301-1312
  • 17 Eichenbaum H, Yonelinas AP, Ranganath C. The medial temporal lobe and recognition memory. Annu Rev Neurosci 2007; 30 (01) 123-152
  • 18 Jack Jr CR, Dickson DW, Parisi JE. , et al. Antemortem MRI findings correlate with hippocampal neuropathology in typical aging and dementia. Neurology 2002; 58 (05) 750-757
  • 19 Jack Jr CR, Petersen RC, Xu Y. , et al. Rate of medial temporal lobe atrophy in typical aging and Alzheimer's disease. Neurology 1998; 51 (04) 993-999
  • 20 Petersen RC, Jack Jr CR, Xu YC. , et al. Memory and MRI-based hippocampal volumes in aging and AD. Neurology 2000; 54 (03) 581-587
  • 21 Shi F, Liu B, Zhou Y, Yu C, Jiang T. Hippocampal volume and asymmetry in mild cognitive impairment and Alzheimer's disease: meta-analyses of MRI studies. Hippocampus 2009; 19 (11) 1055-1064
  • 22 Hashimoto M, Kitagaki H, Imamura T. , et al. Medial temporal and whole-brain atrophy in dementia with Lewy bodies: a volumetric MRI study. Neurology 1998; 51 (02) 357-362
  • 23 Vemuri P, Simon G, Kantarci K. , et al. Antemortem differential diagnosis of dementia pathology using structural MRI: differential-STAND. Neuroimage 2011; 55 (02) 522-531
  • 24 Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A 2004; 101 (13) 4637-4642
  • 25 Yoshiura T, Hiwatashi A, Noguchi T. , et al. Arterial spin labelling at 3-T MR imaging for detection of individuals with Alzheimer's disease. Eur Radiol 2009; 19 (12) 2819-2825
  • 26 Landau SM, Harvey D, Madison CM. , et al; Alzheimer's Disease Neuroimaging Initiative. Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI. Neurobiol Aging 2011; 32 (07) 1207-1218
  • 27 Bélanger M, Allaman I, Magistretti PJ. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 2011; 14 (06) 724-738
  • 28 Minoshima S, Frey KA, Koeppe RA, Foster NL, Kuhl DE. A diagnostic approach in Alzheimer's disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med 1995; 36 (07) 1238-1248
  • 29 Weiner MW, Aisen PS, Jack Jr CR. , et al; Alzheimer's Disease Neuroimaging Initiative. The Alzheimer's disease neuroimaging initiative: progress report and future plans. Alzheimers Dement 2010; 6 (03) 202-11.e7
  • 30 Lehman VT, Carter RE, Claassen DO. , et al. Visual assessment versus quantitative three-dimensional stereotactic surface projection fluorodeoxyglucose positron emission tomography for detection of mild cognitive impairment and Alzheimer disease. Clin Nucl Med 2012; 37 (08) 721-726
  • 31 Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease. Ann Neurol 1997; 42 (01) 85-94
  • 32 Garibotto V, Herholz K, Boccardi M. , et al; Geneva Task Force for the Roadmap of Alzheimer's Biomarkers. Clinical validity of brain fluorodeoxyglucose positron emission tomography as a biomarker for Alzheimer's disease in the context of a structured 5-phase development framework. Neurobiol Aging 2017; 52: 183-195
  • 33 Mosconi L. Brain glucose metabolism in the early and specific diagnosis of Alzheimer's disease. FDG-PET studies in MCI and AD. Eur J Nucl Med Mol Imaging 2005; 32 (04) 486-510
  • 34 Kim EJ, Cho SS, Jeong Y. , et al. Glucose metabolism in early onset versus late onset Alzheimer's disease: an SPM analysis of 120 patients. Brain 2005; 128 (Pt 8): 1790-1801
  • 35 Silverman DH, Small GW, Chang CY. , et al. Positron emission tomography in evaluation of dementia: regional brain metabolism and long-term outcome. JAMA 2001; 286 (17) 2120-2127
  • 36 Bao W, Jia H, Finnema S, Cai Z, Carson RE, Huang YH. PET imaging for early detection of Alzheimer's disease: from pathologic to physiologic biomarkers. PET Clin 2017; 12 (03) 329-350
  • 37 Sakamoto S, Ishii K, Sasaki M. , et al. Differences in cerebral metabolic impairment between early and late onset types of Alzheimer's disease. J Neurol Sci 2002; 200 (1-2): 27-32
  • 38 Shivamurthy VK, Tahari AK, Marcus C, Subramaniam RM. Brain FDG PET and the diagnosis of dementia. AJR Am J Roentgenol 2015; 204 (01) W76-85
  • 39 Elias A, Woodward M, Rowe CC. Management impact of FDG-PET in dementia: results from a tertiary center memory clinic. J Alzheimers Dis 2014; 42 (03) 885-892
  • 40 Laforce Jr R, Buteau JP, Paquet N, Verret L, Houde M, Bouchard RW. The value of PET in mild cognitive impairment, typical and atypical/unclear dementias: a retrospective memory clinic study. Am J Alzheimers Dis Other Demen 2010; 25 (04) 324-332
  • 41 Chételat G, Desgranges B, de la Sayette V, Viader F, Eustache F, Baron JC. Mild cognitive impairment: can FDG-PET predict who is to rapidly convert to Alzheimer's disease?. Neurology 2003; 60 (08) 1374-1377
  • 42 de Leon MJ, Convit A, Wolf OT. , et al. Prediction of cognitive decline in normal elderly subjects with 2-[(18)F]fluoro-2-deoxy-D-glucose/positron-emission tomography (FDG/PET). Proc Natl Acad Sci U S A 2001; 98 (19) 10966-10971
  • 43 Smailagic N, Vacante M, Hyde C, Martin S, Ukoumunne O, Sachpekidis C. 18F-FDG PET for the early diagnosis of Alzheimer's disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev 2015; 1: CD010632
  • 44 Morbelli S, Garibotto V, Van De Giessen E. , et al; European Association of Nuclear Medicine. A Cochrane review on brain [18F]FDG PET in dementia: limitations and future perspectives. Eur J Nucl Med Mol Imaging 2015; 42 (10) 1487-1491
  • 45 Wiers CE, Shokri-Kojori E, Wong CT. , et al. Cannabis abusers show hypofrontality and blunted brain responses to a stimulant challenge in females but not in males. Neuropsychopharmacology 2016; 41 (10) 2596-2605
  • 46 Ishibashi K, Onishi A, Fujiwara Y, Ishiwata K, Ishii K. Relationship between Alzheimer disease-like pattern of 18F-FDG and fasting plasma glucose levels in cognitively normal volunteers. J Nucl Med 2015; 56 (02) 229-233
  • 47 Burns CM, Chen K, Kaszniak AW. , et al. Higher serum glucose levels are associated with cerebral hypometabolism in Alzheimer regions. Neurology 2013; 80 (17) 1557-1564
  • 48 Teipel SJ, Drzezga A, Bartenstein P, Möller HJ, Schwaiger M, Hampel H. Effects of donepezil on cortical metabolic response to activation during (18)FDG-PET in Alzheimer's disease: a double-blind cross-over trial. Psychopharmacology (Berl) 2006; 187 (01) 86-94
  • 49 Chen MK, Mecca AP, Naganawa M. , et al. Assessing synaptic density in Alzheimer disease with synaptic vesicle glycoprotein 2A positron emission tomographic imaging. JAMA Neurol 2018; 75 (10) 1215-1224
  • 50 Klunk WE, Engler H, Nordberg A. , et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh compound-B. Ann Neurol 2004; 55 (03) 306-319
  • 51 Mathis CA, Wang Y, Holt DP, Huang GF, Debnath ML, Klunk WE. Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J Med Chem 2003; 46 (13) 2740-2754
  • 52 Anand K, Sabbagh M. Amyloid imaging: poised for integration into medical practice. Neurotherapeutics 2017; 14 (01) 54-61
  • 53 Clark CM, Pontecorvo MJ, Beach TG. , et al; AV-45-A16 Study Group. Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-β plaques: a prospective cohort study. Lancet Neurol 2012; 11 (08) 669-678
  • 54 Wolk DA, Zhang Z, Boudhar S, Clark CM, Pontecorvo MJ, Arnold SE. Amyloid imaging in Alzheimer's disease: comparison of florbetapir and Pittsburgh compound-B positron emission tomography. J Neurol Neurosurg Psychiatry 2012; 83 (09) 923-926
  • 55 Joshi AD, Pontecorvo MJ, Lu M, Skovronsky DM, Mintun MA, Devous Sr MD. A semiautomated method for quantification of F 18 florbetapir PET images. J Nucl Med 2015; 56 (11) 1736-1741
  • 56 Nayate AP, Dubroff JG, Schmitt JE. , et al; Alzheimer's Disease Neuroimaging Initiative. Use of standardized uptake value ratios decreases interreader variability of [18F] florbetapir PET brain scan interpretation. AJNR Am J Neuroradiol 2015; 36 (07) 1237-1244
  • 57 Trembath L, Newell M, Devous Sr MD. Technical considerations in brain amyloid PET imaging with 18F-florbetapir. J Nucl Med Technol 2015; 43 (03) 175-184
  • 58 Chételat G, La Joie R, Villain N. , et al. Amyloid imaging in cognitively normal individuals, at-risk populations and preclinical Alzheimer's disease. Neuroimage Clin 2013; 2: 356-365
  • 59 Price JL, Morris JC. Tangles and plaques in nondemented aging and “preclinical” Alzheimer's disease. Ann Neurol 1999; 45 (03) 358-368
  • 60 Grundman M, Pontecorvo MJ, Salloway SP. , et al; 45-A17 Study Group. Potential impact of amyloid imaging on diagnosis and intended management in patients with progressive cognitive decline. Alzheimer Dis Assoc Disord 2013; 27 (01) 4-15
  • 61 Villemagne VL. Amyloid imaging: past, present and future perspectives. Ageing Res Rev 2016; 30: 95-106
  • 62 Klunk WE, Koeppe RA, Price JC. , et al. The Centiloid Project: standardizing quantitative amyloid plaque estimation by PET. Alzheimers Dement 2015; 11 (01) 1-15.e1 , 4
  • 63 Johnson KA, Minoshima S, Bohnen NI. , et al; Alzheimer's Association; Society of Nuclear Medicine and Molecular Imaging; Amyloid Imaging Taskforce. Appropriate use criteria for amyloid PET: a report of the Amyloid Imaging Task Force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer's Association. Alzheimers Dement 2013; 9 (01) e-1-e-16
  • 64 Cummings JL, Morstorf T, Zhong K. Alzheimer's disease drug-development pipeline: few candidates, frequent failures. Alzheimers Res Ther 2014; 6 (04) 37
  • 65 Villemagne VL, Okamura N. Tau imaging in the study of ageing, Alzheimer's disease, and other neurodegenerative conditions. Curr Opin Neurobiol 2016; 36: 43-51
  • 66 Harada R, Okamura N, Furumoto S. , et al. Characteristics of tau and its ligands in PET imaging. Biomolecules 2016; 6 (01) 7
  • 67 Holtzman DM, Carrillo MC, Hendrix JA. , et al. Tau: from research to clinical development. Alzheimers Dement 2016; 12 (10) 1033-1039
  • 68 Ng KP, Pascoal TA, Mathotaarachchi S. , et al. Monoamine oxidase B inhibitor, selegiline, reduces 18F-THK5351 uptake in the human brain. Alzheimers Res Ther 2017; 9 (01) 25
  • 69 Betthauser TJ, Cody KA, Zammit MD. , et al. In vivo characterization and quantification of neurofibrillary tau PET radioligand [18F]MK-6240 in humans from Alzheimer's disease dementia to young controls. J Nucl Med 2018; jnumed.118.209650
  • 70 Lohith TG, Bennacef I, Vandenberghe R. , et al. First-in-human brain imaging of Alzheimer dementia patients and elderly controls with 18F-MK-6240, a PET tracer targeting neurofibrillary tangle pathology. J Nucl Med 2018; jnumed.118.208215
  • 71 Pascoal TA, Shin M, Kang MS. , et al. In vivo quantification of neurofibrillary tangles with [18F]MK-6240. Alzheimers Res Ther 2018; 10 (01) 74
  • 72 Kuwabara H, Comley RA, Borroni E. , et al. Evaluation of 18F-RO-948 PET for quantitative assessment of tau accumulation in the human brain. J Nucl Med 2018; 59 (12) 1877-1884