Semin Respir Crit Care Med 2019; 40(01): 081-093
DOI: 10.1055/s-0039-1683896
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Optimal Ventilator Strategies in Acute Respiratory Distress Syndrome

Michael C. Sklar
1   Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
,
Bhakti K. Patel
2   Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, Illinois
,
Jeremy R. Beitler
3   Center for Acute Respiratory Failure and Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University, New York, New York
,
Thomas Piraino
4   Keenan Centre for Biomedical Research, St. Michael's Hospital, Toronto, Ontario, Canada
5   Division of Critical Care, Department of Anesthesia, McMaster University, Hamilton, Ontario, Canada
6   Department of Respiratory Therapy, St. Michael's Hospital, Toronto, Ontario, Canada
,
Ewan C. Goligher
1   Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
7   Toronto General Hospital Research Institute, Toronto, Ontario, Canada
8   Department of Medicine, Division of Respirology, University Health Network, Toronto, Ontario, Canada
› Author Affiliations
Further Information

Publication History

Publication Date:
06 May 2019 (online)

Abstract

Mechanical ventilation practices in patients with acute respiratory distress syndrome (ARDS) have progressed with a growing understanding of the disease pathophysiology. Paramount to the care of affected patients is the delivery of lung-protective mechanical ventilation which prioritizes tidal volume and plateau pressure limitation. Lung protection can probably be further enhanced by scaling target tidal volumes to the specific respiratory mechanics of individual patients. The best procedure for selecting optimal positive end-expiratory pressure (PEEP) in ARDS remains uncertain; several relevant issues must be considered when selecting PEEP, particularly lung recruitability. Noninvasive ventilation must be used with caution in ARDS as excessively high respiratory drive can further exacerbate lung injury; newer modes of delivery offer promising approaches in hypoxemic respiratory failure. Airway pressure release ventilation offers an alternative approach to maximize lung recruitment and oxygenation, but clinical trials have not demonstrated a survival benefit of this mode over conventional ventilation strategies. Rescue therapy with high-frequency oscillatory ventilation is an important option in refractory hypoxemia. Despite a disappointing lack of benefit (and possible harm) in patients with moderate or severe ARDS, possibly due to lung hyperdistention and right ventricular dysfunction, high-frequency oscillation may improve outcome in patients with very severe hypoxemia.

 
  • References

  • 1 Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. ; Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000; 342 (18) 1301-1308
  • 2 Amato MB, Barbas CS, Medeiros DM. , et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 1998; 338 (06) 347-354
  • 3 Dreyfuss D, Soler P, Basset G, Saumon G. High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 1988; 137 (05) 1159-1164
  • 4 Cressoni M, Cadringher P, Chiurazzi C. , et al. Lung inhomogeneity in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 2014; 189 (02) 149-158
  • 5 Cressoni M, Chiumello D, Chiurazzi C. , et al. Lung inhomogeneities, inflation and [18F]2-fluoro-2-deoxy-D-glucose uptake rate in acute respiratory distress syndrome. Eur Respir J 2016; 47 (01) 233-242
  • 6 Ghadiali S, Huang Y. Role of airway recruitment and derecruitment in lung injury. Crit Rev Biomed Eng 2011; 39 (04) 297-317
  • 7 Muscedere JG, Mullen JB, Gan K, Slutsky AS. Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 1994; 149 (05) 1327-1334
  • 8 Taskar V, John J, Evander E, Robertson B, Jonson B. Surfactant dysfunction makes lungs vulnerable to repetitive collapse and reexpansion. Am J Respir Crit Care Med 1997; 155 (01) 313-320
  • 9 Gajic O, Lee J, Doerr CH, Berrios JC, Myers JL, Hubmayr RD. Ventilator-induced cell wounding and repair in the intact lung. Am J Respir Crit Care Med 2003; 167 (08) 1057-1063
  • 10 Matthay MA, Bhattacharya S, Gaver D. , et al. Ventilator-induced lung injury: in vivo and in vitro mechanisms. Am J Physiol Lung Cell Mol Physiol 2002; 283 (04) L678-L682
  • 11 Pelosi P, Rocco PR. Effects of mechanical ventilation on the extracellular matrix. Intensive Care Med 2008; 34 (04) 631-639
  • 12 Ranieri VM, Giunta F, Suter PM, Slutsky AS. Mechanical ventilation as a mediator of multisystem organ failure in acute respiratory distress syndrome. JAMA 2000; 284 (01) 43-44
  • 13 Ranieri VM, Suter PM, Tortorella C. , et al. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 1999; 282 (01) 54-61
  • 14 Bein T, Weber-Carstens S, Goldmann A. , et al. Lower tidal volume strategy (≈3 ml/kg) combined with extracorporeal CO2 removal versus ‘conventional’ protective ventilation (6 ml/kg) in severe ARDS: the prospective randomized Xtravent-study. Intensive Care Med 2013; 39 (05) 847-856
  • 15 Terragni PP, Del Sorbo L, Mascia L. , et al. Tidal volume lower than 6 ml/kg enhances lung protection: role of extracorporeal carbon dioxide removal. Anesthesiology 2009; 111 (04) 826-835
  • 16 Combes A, Hajage D, Capellier G. , et al; EOLIA Trial Group, REVA, and ECMONet. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N Engl J Med 2018; 378 (21) 1965-1975
  • 17 Goligher EC, Tomlinson G, Hajage D. , et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome and posterior probability of mortality benefit in a post hoc bayesian analysis of a randomized clinical trial. JAMA 2018; 320 (21) 2251-2259
  • 18 Deans KJ, Minneci PC, Cui X, Banks SM, Natanson C, Eichacker PQ. Mechanical ventilation in ARDS: one size does not fit all. Crit Care Med 2005; 33 (05) 1141-1143
  • 19 Frank JA, Gutierrez JA, Jones KD, Allen L, Dobbs L, Matthay MA. Low tidal volume reduces epithelial and endothelial injury in acid-injured rat lungs. Am J Respir Crit Care Med 2002; 165 (02) 242-249
  • 20 MacIntyre NR. Lung protective ventilator strategies: beyond scaling tidal volumes to ideal lung size. Crit Care Med 2016; 44 (01) 244-245
  • 21 Beitler JR, Goligher EC, Schmidt M. , et al; ARDSne(x)t Investigators. Personalized medicine for ARDS: the 2035 research agenda. Intensive Care Med 2016; 42 (05) 756-767
  • 22 Amato MB, Meade MO, Slutsky AS. , et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 2015; 372 (08) 747-755
  • 23 Beitler JR, Majumdar R, Hubmayr RD. , et al. Volume delivered during recruitment maneuver predicts lung stress in acute respiratory distress syndrome. Crit Care Med 2016; 44 (01) 91-99
  • 24 Cherniack RM, Farhi LE, Armstrong BW, Proctor DF. A comparison of esophageal and intrapleural pressure in man. J Appl Physiol 1955; 8 (02) 203-211
  • 25 Mead J, Gaensler EA. Esophageal and pleural pressures in man, upright and supine. J Appl Physiol 1959; 14 (01) 81-83
  • 26 Chiumello D, Carlesso E, Cadringher P. , et al. Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med 2008; 178 (04) 346-355
  • 27 Chiumello D, Cressoni M, Chierichetti M. , et al. Nitrogen washout/washin, helium dilution and computed tomography in the assessment of end expiratory lung volume. Crit Care 2008; 12 (06) R150
  • 28 Mattingley JS, Holets SR, Oeckler RA, Stroetz RW, Buck CF, Hubmayr RD. Sizing the lung of mechanically ventilated patients. Crit Care 2011; 15 (01) R60
  • 29 Beitler JR, Schoenfeld DA, Thompson BT. Preventing ARDS: progress, promise, and pitfalls. Chest 2014; 146 (04) 1102-1113
  • 30 Litell JM, Gong MN, Talmor D, Gajic O. Acute lung injury: prevention may be the best medicine. Respir Care 2011; 56 (10) 1546-1554
  • 31 Terragni PP, Rosboch G, Tealdi A. , et al. Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med 2007; 175 (02) 160-166
  • 32 Gajic O, Dabbagh O, Park PK. , et al; U.S. Critical Illness and Injury Trials Group: Lung Injury Prevention Study Investigators (USCIITG-LIPS). Early identification of patients at risk of acute lung injury: evaluation of lung injury prediction score in a multicenter cohort study. Am J Respir Crit Care Med 2011; 183 (04) 462-470
  • 33 Levitt JE, Bedi H, Calfee CS, Gould MK, Matthay MA. Identification of early acute lung injury at initial evaluation in an acute care setting prior to the onset of respiratory failure. Chest 2009; 135 (04) 936-943
  • 34 Jabaudon M, Berthelin P, Pranal T. , et al. Receptor for advanced glycation end-products and ARDS prediction: a multicentre observational study. Sci Rep 2018; 8 (01) 2603
  • 35 Jabaudon M, Blondonnet R, Pereira B. , et al. Plasma sRAGE is independently associated with increased mortality in ARDS: a meta-analysis of individual patient data. Intensive Care Med 2018; 44 (09) 1388-1399
  • 36 Jabaudon M, Blondonnet R, Roszyk L. , et al. Soluble receptor for advanced glycation end-products predicts impaired alveolar fluid clearance in acute respiratory distress syndrome. Am J Respir Crit Care Med 2015; 192 (02) 191-199
  • 37 Jabaudon M, Futier E, Roszyk L. , et al. Soluble form of the receptor for advanced glycation end products is a marker of acute lung injury but not of severe sepsis in critically ill patients. Crit Care Med 2011; 39 (03) 480-488
  • 38 Uchida T, Shirasawa M, Ware LB. , et al. Receptor for advanced glycation end-products is a marker of type I cell injury in acute lung injury. Am J Respir Crit Care Med 2006; 173 (09) 1008-1015
  • 39 Agrawal A, Matthay MA, Kangelaris KN. , et al. Plasma angiopoietin-2 predicts the onset of acute lung injury in critically ill patients. Am J Respir Crit Care Med 2013; 187 (07) 736-742
  • 40 Calfee CS, Gallagher D, Abbott J, Thompson BT, Matthay MA. ; NHLBI ARDS Network. Plasma angiopoietin-2 in clinical acute lung injury: prognostic and pathogenetic significance. Crit Care Med 2012; 40 (06) 1731-1737
  • 41 van der Heijden M, Pickkers P, van Nieuw Amerongen GP. , et al. Circulating angiopoietin-2 levels in the course of septic shock: relation with fluid balance, pulmonary dysfunction and mortality. Intensive Care Med 2009; 35 (09) 1567-1574
  • 42 Ely EW, Shintani A, Truman B. , et al. Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. JAMA 2004; 291 (14) 1753-1762
  • 43 Girard TD, Jackson JC, Pandharipande PP. , et al. Delirium as a predictor of long-term cognitive impairment in survivors of critical illness. Crit Care Med 2010; 38 (07) 1513-1520
  • 44 Goligher EC, Fan E, Herridge MS. , et al. Evolution of diaphragm thickness during mechanical ventilation: impact of inspiratory effort. Am J Respir Crit Care Med 2015; 192 (09) 1080-1088
  • 45 Schweickert WD, Pohlman MC, Pohlman AS. , et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet 2009; 373 (9678): 1874-1882
  • 46 Brodie D, Bacchetta M. Extracorporeal membrane oxygenation for ARDS in adults. N Engl J Med 2011; 365 (20) 1905-1914
  • 47 Ashbaugh DG, Bigelow DB, Petty TL, Levine BE. Acute respiratory distress in adults. Lancet 1967; 2 (7511): 319-323
  • 48 Sahetya SK, Goligher EC, Brower RG. Fifty years of research in ARDS. Setting positive end-expiratory pressure in acute respiratory distress syndrome. Am J Respir Crit Care Med 2017; 195 (11) 1429-1438
  • 49 Caironi P, Cressoni M, Chiumello D. , et al. Lung opening and closing during ventilation of acute respiratory distress syndrome. Am J Respir Crit Care Med 2010; 181 (06) 578-586
  • 50 Ghadiali SN, Gaver DP. Biomechanics of liquid-epithelium interactions in pulmonary airways. Respir Physiol Neurobiol 2008; 163 (1–3): 232-243
  • 51 Mélot C. Contribution of multiple inert gas elimination technique to pulmonary medicine. 5. Ventilation-perfusion relationships in acute respiratory failure. Thorax 1994; 49 (12) 1251-1258
  • 52 Di Marco F, Devaquet J, Lyazidi A. , et al. Positive end-expiratory pressure-induced functional recruitment in patients with acute respiratory distress syndrome. Crit Care Med 2010; 38 (01) 127-132
  • 53 Protti A, Andreis DT, Monti M. , et al. Lung stress and strain during mechanical ventilation: any difference between statics and dynamics?. Crit Care Med 2013; 41 (04) 1046-1055
  • 54 Suter PM, Fairley B, Isenberg MD. Optimum end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med 1975; 292 (06) 284-289
  • 55 Dhainaut JF, Devaux JY, Monsallier JF, Brunet F, Villemant D, Huyghebaert MF. Mechanisms of decreased left ventricular preload during continuous positive pressure ventilation in ARDS. Chest 1986; 90 (01) 74-80
  • 56 Cournand A, Motley HL, Werko L, Richards Jr DW. Physiological studies of the effects of intermittent positive pressure breathing on cardiac output in man. Am J Physiol 1948; 152 (01) 162-174
  • 57 Barach AL, Eckman M, Ginsburg E. , et al. Studies on positive pressure respiration; general aspects and types of pressure breathing; effects on respiration and circulation at sea level. J Aviat Med 1946; 17: 290-32
  • 58 Mekontso Dessap A, Boissier F, Charron C. , et al. Acute cor pulmonale during protective ventilation for acute respiratory distress syndrome: prevalence, predictors, and clinical impact. Intensive Care Med 2016; 42 (05) 862-870
  • 59 Jardin F, Delorme G, Hardy A, Auvert B, Beauchet A, Bourdarias JP. Reevaluation of hemodynamic consequences of positive pressure ventilation: emphasis on cyclic right ventricular afterloading by mechanical lung inflation. Anesthesiology 1990; 72 (06) 966-970
  • 60 Gattinoni L, Pesenti A. The concept of “baby lung”. Intensive Care Med 2005; 31 (06) 776-784
  • 61 Lachmann B. Open up the lung and keep the lung open. Intensive Care Med 1992; 18 (06) 319-321
  • 62 Borges JB, Okamoto VN, Matos GF. , et al. Reversibility of lung collapse and hypoxemia in early acute respiratory distress syndrome. Am J Respir Crit Care Med 2006; 174 (03) 268-278
  • 63 Hess DR, Bigatello LM. Lung recruitment: the role of recruitment maneuvers. Respir Care 2002; 47 (03) 308-317 , discussion 317–318
  • 64 Lim SC, Adams AB, Simonson DA. , et al. Intercomparison of recruitment maneuver efficacy in three models of acute lung injury. Crit Care Med 2004; 32 (12) 2371-2377
  • 65 Gattinoni L, Caironi P, Cressoni M. , et al. Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med 2006; 354 (17) 1775-1786
  • 66 Brower RG, Lanken PN, MacIntyre N. , et al; National Heart, Lung, and Blood Institute ARDS Clinical Trials Network. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 2004; 351 (04) 327-336
  • 67 Meade MO, Cook DJ, Guyatt GH. , et al; Lung Open Ventilation Study Investigators. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 2008; 299 (06) 637-645
  • 68 Mercat A, Richard J-CM, Vielle B. , et al; Expiratory Pressure (Express) Study Group. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 2008; 299 (06) 646-655
  • 69 Cavalcanti AB, Suzumura EA, Laranjeira LN. , et al; Writing Group for the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial (ART) Investigators. Effect of lung recruitment and titrated positive end-expiratory pressure (PEEP) vs low PEEP on mortality in patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA 2017; 318 (14) 1335-1345
  • 70 Villar J, Suárez-Sipmann F, Kacmarek RM. Should the ART trial change our practice?. J Thorac Dis 2017; 9 (12) 4871-4877
  • 71 Yoshida T, Nakahashi S, Nakamura MAM. , et al. Volume-controlled ventilation does not prevent injurious inflation during spontaneous effort. Am J Respir Crit Care Med 2017; 196 (05) 590-601
  • 72 Kacmarek RM, Villar J, Sulemanji D. , et al; Open Lung Approach Network. Open lung approach for the acute respiratory distress syndrome: a pilot, randomized controlled trial. Crit Care Med 2016; 44 (01) 32-42
  • 73 Goligher EC, Kavanagh BP, Rubenfeld GD, Ferguson ND. Physiologic responsiveness should guide entry into randomized controlled trials. Am J Respir Crit Care Med 2015; 192 (12) 1416-1419
  • 74 Goligher EC, Kavanagh BP, Rubenfeld GD. , et al. Oxygenation response to positive end-expiratory pressure predicts mortality in acute respiratory distress syndrome. A secondary analysis of the LOVS and ExPress trials. Am J Respir Crit Care Med 2014; 190 (01) 70-76
  • 75 Calfee CS, Delucchi KL, Sinha P. , et al; Irish Critical Care Trials Group. Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: secondary analysis of a randomised controlled trial. Lancet Respir Med 2018; 6 (09) 691-698
  • 76 Chiumello D, Marino A, Brioni M. , et al. Lung recruitment assessed by respiratory mechanics and computed tomography in patients with acute respiratory distress syndrome. What is the relationship?. Am J Respir Crit Care Med 2016; 193 (11) 1254-1263
  • 77 Decailliot F, Demoule A, Maggiore SM, Jonson B, Duvaldestin P, Brochard L. Pressure-volume curves with and without muscle paralysis in acute respiratory distress syndrome. Intensive Care Med 2006; 32 (09) 1322-1328
  • 78 Grasso S, Terragni P, Mascia L. , et al. Airway pressure-time curve profile (stress index) detects tidal recruitment/hyperinflation in experimental acute lung injury. Crit Care Med 2004; 32 (04) 1018-1027
  • 79 Talmor D, Sarge T, Malhotra A. , et al. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med 2008; 359 (20) 2095-2104
  • 80 Costa EL, Borges JB, Melo A. , et al. Bedside estimation of recruitable alveolar collapse and hyperdistension by electrical impedance tomography. Intensive Care Med 2009; 35 (06) 1132-1137
  • 81 Brochard L, Mancebo J, Wysocki M. , et al. Noninvasive ventilation for acute exacerbations of chronic obstructive pulmonary disease. N Engl J Med 1995; 333 (13) 817-822
  • 82 Masip J, Roque M, Sánchez B, Fernández R, Subirana M, Expósito JA. Noninvasive ventilation in acute cardiogenic pulmonary edema: systematic review and meta-analysis. JAMA 2005; 294 (24) 3124-3130
  • 83 Herridge MS, Tansey CM, Matté A. , et al; Canadian Critical Care Trials Group. Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med 2011; 364 (14) 1293-1304
  • 84 Antonelli M, Conti G, Esquinas A. , et al. A multiple-center survey on the use in clinical practice of noninvasive ventilation as a first-line intervention for acute respiratory distress syndrome. Crit Care Med 2007; 35 (01) 18-25
  • 85 Walkey AJ, Wiener RS. Use of noninvasive ventilation in patients with acute respiratory failure, 2000–2009: a population-based study. Ann Am Thorac Soc 2013; 10 (01) 10-17
  • 86 Ranieri VM, Rubenfeld GD, Thompson BT. , et al; ARDS Definition Task Force. Acute respiratory distress syndrome: the Berlin Definition. JAMA 2012; 307 (23) 2526-2533
  • 87 L'Her E, Deye N, Lellouche F. , et al. Physiologic effects of noninvasive ventilation during acute lung injury. Am J Respir Crit Care Med 2005; 172 (09) 1112-1118
  • 88 Kallet RH, Hemphill III JC, Dicker RA. , et al. The spontaneous breathing pattern and work of breathing of patients with acute respiratory distress syndrome and acute lung injury. Respir Care 2007; 52 (08) 989-995
  • 89 Carteaux G, Millán-Guilarte T, De Prost N. , et al. Failure of noninvasive ventilation for de novo acute hypoxemic respiratory failure: role of tidal volume. Crit Care Med 2016; 44 (02) 282-290
  • 90 Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med 2017; 195 (04) 438-442
  • 91 Bellani G, Laffey JG, Pham T. , et al; LUNG SAFE Investigators; ESICM Trials Group. Noninvasive ventilation of patients with acute respiratory distress syndrome. Insights from the LUNG SAFE study. Am J Respir Crit Care Med 2017; 195 (01) 67-77
  • 92 Agarwal R, Aggarwal AN, Gupta D. Role of noninvasive ventilation in acute lung injury/acute respiratory distress syndrome: a proportion meta-analysis. Respir Care 2010; 55 (12) 1653-1660
  • 93 Thille AW, Contou D, Fragnoli C, Córdoba-Izquierdo A, Boissier F, Brun-Buisson C. Non-invasive ventilation for acute hypoxemic respiratory failure: intubation rate and risk factors. Crit Care 2013; 17 (06) R269
  • 94 Rana S, Jenad H, Gay PC, Buck CF, Hubmayr RD, Gajic O. Failure of non-invasive ventilation in patients with acute lung injury: observational cohort study. Crit Care 2006; 10 (03) R79
  • 95 Antonelli M, Conti G, Moro ML. , et al. Predictors of failure of noninvasive positive pressure ventilation in patients with acute hypoxemic respiratory failure: a multi-center study. Intensive Care Med 2001; 27 (11) 1718-1728
  • 96 Duan J, Han X, Bai L, Zhou L, Huang S. Assessment of heart rate, acidosis, consciousness, oxygenation, and respiratory rate to predict noninvasive ventilation failure in hypoxemic patients. Intensive Care Med 2017; 43 (02) 192-199
  • 97 Frat JP, Thille AW, Mercat A. , et al; FLORALI Study Group; REVA Network. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med 2015; 372 (23) 2185-2196
  • 98 Patel BK, Wolfe KS, Pohlman AS, Hall JB, Kress JP. Effect of noninvasive ventilation delivered by helmet vs face mask on the rate of endotracheal intubation in patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA 2016; 315 (22) 2435-2441
  • 99 Patel BK, Wolfe KS, MacKenzie EL. , et al. One-year outcomes in patients with acute respiratory distress syndrome enrolled in a randomized clinical trial of helmet versus facemask noninvasive ventilation. Crit Care Med 2018; 46 (07) 1078-1084
  • 100 Rochwerg B, Brochard L, Elliott MW. , et al. Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure. Eur Respir J 2017; 50 (02) 50
  • 101 Stock MC, Downs JB, Frolicher DA. Airway pressure release ventilation. Crit Care Med 1987; 15 (05) 462-466
  • 102 Rose L, Hawkins M. Airway pressure release ventilation and biphasic positive airway pressure: a systematic review of definitional criteria. Intensive Care Med 2008; 34 (10) 1766-1773
  • 103 Piraino T, Fan E. Airway pressure release ventilation in patients with acute respiratory distress syndrome: not yet, we still need more data!. J Thorac Dis 2018; 10 (02) 670-673
  • 104 Putensen C, Zech S, Wrigge H. , et al. Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med 2001; 164 (01) 43-49
  • 105 Varpula T, Jousela I, Niemi R, Takkunen O, Pettilä V. Combined effects of prone positioning and airway pressure release ventilation on gas exchange in patients with acute lung injury. Acta Anaesthesiol Scand 2003; 47 (05) 516-524
  • 106 Varpula T, Valta P, Niemi R, Takkunen O, Hynynen M, Pettilä VV. Airway pressure release ventilation as a primary ventilatory mode in acute respiratory distress syndrome. Acta Anaesthesiol Scand 2004; 48 (06) 722-731
  • 107 Maxwell RA, Green JM, Waldrop J. , et al. A randomized prospective trial of airway pressure release ventilation and low tidal volume ventilation in adult trauma patients with acute respiratory failure. J Trauma 2010; 69 (03) 501-510 , discussion 511
  • 108 Zhou Y, Jin X, Lv Y. , et al. Early application of airway pressure release ventilation may reduce the duration of mechanical ventilation in acute respiratory distress syndrome. Intensive Care Med 2017; 43 (11) 1648-1659
  • 109 Mireles-Cabodevila E, Dugar S, Chatburn RL. APRV for ARDS: the complexities of a mode and how it affects even the best trials. J Thorac Dis 2018; 10 (Suppl. 09) S1058-S1063
  • 110 Lalgudi Ganesan S, Jayashree M, Chandra Singhi S, Bansal A. Airway pressure release ventilation in pediatric acute respiratory distress syndrome. A randomized controlled trial. Am J Respir Crit Care Med 2018; 198 (09) 1199-1207
  • 111 Rittayamai N, Beloncle F, Goligher EC. , et al. Effect of inspiratory synchronization during pressure-controlled ventilation on lung distension and inspiratory effort. Ann Intensive Care 2017; 7 (01) 100
  • 112 Stawicki SP, Goyal M, Sarani B. High-frequency oscillatory ventilation (HFOV) and airway pressure release ventilation (APRV): a practical guide. J Intensive Care Med 2009; 24 (04) 215-229
  • 113 Ferguson ND, Cook DJ, Guyatt GH. , et al; OSCILLATE Trial Investigators; Canadian Critical Care Trials Group. High-frequency oscillation in early acute respiratory distress syndrome. N Engl J Med 2013; 368 (09) 795-805
  • 114 Young D, Lamb SE, Shah S. , et al; OSCAR Study Group. High-frequency oscillation for acute respiratory distress syndrome. N Engl J Med 2013; 368 (09) 806-813
  • 115 Sklar MC, Fan E, Goligher EC. High-frequency oscillatory ventilation in adults with ARDS: past, present, and future. Chest 2017; 152 (06) 1306-1317
  • 116 Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med 2013; 369 (22) 2126-2136
  • 117 Ferguson N, Slutsky A. Last word on point:counterpoint: high-frequency ventilation is/is not the optimal physiological approach to ventilate ARDS patients. J Appl Physiol (1985) 2008; 104 (04) 1240
  • 118 Slutsky AS, Kamm RD, Rossing TH. , et al. Effects of frequency, tidal volume, and lung volume on CO2 elimination in dogs by high frequency (2-30 Hz), low tidal volume ventilation. J Clin Invest 1981; 68 (06) 1475-1484
  • 119 Drazen JM, Kamm RD, Slutsky AS. High-frequency ventilation. Physiol Rev 1984; 64 (02) 505-543
  • 120 Khoo MC, Slutsky AS, Drazen JM, Solway J, Gavriely N, Kamm RD. Gas mixing during high-frequency ventilation: an improved model. J Appl Physiol 1984; 57 (02) 493-506
  • 121 Pillow JJ. High-frequency oscillatory ventilation: mechanisms of gas exchange and lung mechanics. Crit Care Med 2005; 33 (3, Suppl): S135-S141
  • 122 Rossing TH, Slutsky AS, Lehr JL, Drinker PA, Kamm R, Drazen JM. Tidal volume and frequency dependence of carbon dioxide elimination by high-frequency ventilation. N Engl J Med 1981; 305 (23) 1375-1379
  • 123 Slutsky AS, Drazen FM, Ingram Jr RH. , et al. Effective pulmonary ventilation with small-volume oscillations at high frequency. Science 1980; 209 (4456): 609-671
  • 124 Slutsky AS, Drazen JM. Ventilation with small tidal volumes. N Engl J Med 2002; 347 (09) 630-631
  • 125 Scherer PW, Haselton FR. Convective exchange in oscillatory flow through bronchial-tree models. J Appl Physiol 1982; 53 (04) 1023-1033
  • 126 Greenblatt EE, Butler JP, Venegas JG, Winkler T. Pendelluft in the bronchial tree. J Appl Physiol (1985) 2014; 117 (09) 979-988
  • 127 Slutsky AS. Gas mixing by cardiogenic oscillations: a theoretical quantitative analysis. J Appl Physiol 1981; 51 (05) 1287-1293
  • 128 Ultman JS, Shaw RG, Fabiano DC, Cooke KA. Pendelluft and mixing in a single bifurcation lung model during high-frequency oscillation. J Appl Physiol (1985) 1988; 65 (01) 146-155
  • 129 Cybulsky IJ, Abel JG, Menon AS, Salerno TA, Lichtenstein SV, Slutsky AS. Contribution of cardiogenic oscillations to gas exchange in constant-flow ventilation. J Appl Physiol (1985) 1987; 63 (02) 564-570
  • 130 Bollen CW, van Well GTJ, Sherry T. , et al. High frequency oscillatory ventilation compared with conventional mechanical ventilation in adult respiratory distress syndrome: a randomized controlled trial [ISRCTN24242669]. Crit Care 2005; 9 (04) R430-R439
  • 131 Derdak S, Mehta S, Stewart TE. , et al; Multicenter Oscillatory Ventilation For Acute Respiratory Distress Syndrome Trial (MOAT) Study Investigators. High-frequency oscillatory ventilation for acute respiratory distress syndrome in adults: a randomized, controlled trial. Am J Respir Crit Care Med 2002; 166 (06) 801-808
  • 132 Mentzelopoulos SD, Malachias S, Zintzaras E. , et al. Intermittent recruitment with high-frequency oscillation/tracheal gas insufflation in acute respiratory distress syndrome. Eur Respir J 2012; 39 (03) 635-647
  • 133 Sud S, Sud M, Friedrich JO. , et al. High frequency oscillation in patients with acute lung injury and acute respiratory distress syndrome (ARDS): systematic review and meta-analysis. BMJ 2010; 340: c2327
  • 134 Meade MO, Young D, Hanna S. , et al. Severity of hypoxemia and effect of high-frequency oscillatory ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med 2017; 196 (06) 727-733
  • 135 Fan E, Del Sorbo L, Goligher EC. , et al; American Thoracic Society, European Society of Intensive Care Medicine, and Society of Critical Care Medicine. An official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice guideline: mechanical ventilation in adult patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 2017; 195 (09) 1253-1263
  • 136 Fabry B, Maksym GN, Butler JP, Glogauer M, Navajas D, Fredberg JJ. Scaling the microrheology of living cells. Phys Rev Lett 2001; 87 (14) 148102
  • 137 Huh D, Fujioka H, Tung Y-C. , et al. Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems. Proc Natl Acad Sci U S A 2007; 104 (48) 18886-18891
  • 138 Hussein O, Walters B, Stroetz R, Valencia P, McCall D, Hubmayr RD. Biophysical determinants of alveolar epithelial plasma membrane wounding associated with mechanical ventilation. Am J Physiol Lung Cell Mol Physiol 2013; 305 (07) L478-L484
  • 139 Cressoni M, Chiumello D, Algieri I. , et al. Opening pressures and atelectrauma in acute respiratory distress syndrome. Intensive Care Med 2017; 43 (05) 603-611
  • 140 Tabuchi A, Nickles HT, Kim M. , et al. Acute lung injury causes asynchronous alveolar ventilation that can be corrected by individual sighs. Am J Respir Crit Care Med 2016; 193 (04) 396-406
  • 141 Brusasco V, Beck KC, Crawford M, Rehder K. Resonant amplification of delivered volume during high-frequency ventilation. J Appl Physiol (1985) 1986; 60 (03) 885-892
  • 142 David M, von Bardeleben RS, Weiler N. , et al. Cardiac function and haemodynamics during transition to high-frequency oscillatory ventilation. Eur J Anaesthesiol 2004; 21 (12) 944-952
  • 143 Guervilly C, Forel J-M, Hraiech S. , et al. Right ventricular function during high-frequency oscillatory ventilation in adults with acute respiratory distress syndrome. Crit Care Med 2012; 40 (05) 1539-1545
  • 144 Smailys A, Mitchell JR, Doig CJ, Tyberg JV, Belenkie I. High-frequency oscillatory ventilation versus conventional ventilation: hemodynamic effects on lung and heart. Physiol Rep 2014; 2 (03) e00259