CC BY-NC-ND 4.0 · J Neuroanaesth Crit Care 2019; 06(02): 056-061
DOI: 10.1055/s-0039-1688897
Review Article
Indian Society of Neuroanaesthesiology and Critical Care

Sedation During Neurocritical Care

Nieves Vanaclocha
1   Department of Plastic Reconstructive Surgery, Hospital Universitario y Politécnico La Fe, Valencia, Spain
,
Vicente Chisbert
2   Escuela de Doctorado, Universidad Católica de Valencia, “San Vicente Mártir,” Spain
,
Vicent Quilis
3   Department of Neurosurgery, Hospital Clínic Universitari de València, Spain
4   College of Medicine and Science, Mayo Clinic, United States
5   Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Spain
,
Federico Bilotta
6   Department of Anesthesiology, University of Rome “La Sapienza,” Rome, Italy
,
Rafael Badenes
7   Department of Anesthesiology and Surgical-Trauma Intensive Care, Hospital Clinic Universitari Valencia, University of Valencia, Spain
› Author Affiliations
Further Information

Publication History

Received: 04 February 2019

Accepted: 18 March 2019

Publication Date:
06 June 2019 (online)

Abstract

Sedation is an essential therapeutic strategy in the care of neurocritical patients. Intravenous sedative agents are the most widely used, with promising alternatives (dexmedetomidine, ketamine, and volatile agents) to propofol and midazolam arising. Studies designed to evaluate superiority and avoid biases are required. A neurological awakening test is safe in most patients. Potential risks and benefits of limiting deep sedation and daily interruption of sedation in these patients remain unclear. The aim of this review was to report recent clinical evidence on sedation in this subgroup of patients, focusing on its effects on clinical prognosis.

 
  • References

  • 1 Lindgren C, Nordh E, Naredi S, Olivecrona M. Frequency of non-convulsive seizures and non-convulsive status epilepticus in subarachnoid hemorrhage patients in need of controlled ventilation and sedation. Neurocrit Care 2012; 17 (03) 367-373
  • 2 Miller MA, Govindan S, Watson SR, Hyzy RC, Iwashyna TJ. ABCDE, but in that order? A cross-sectional survey of Michigan intensive care unit sedation, delirium, and early mobility practices. Ann Am Thorac Soc 2015; 12 (07) 1066-1071
  • 3 Oldham M, Pisani MA. Sedation in critically ill patients. Crit Care Clin 2015; 31 (03) 563-587
  • 4 Klompas M, Li L, Szumita P, Kleinman K, Murphy MV. CDC Prevention Epicenters Program. Associations between different sedatives and ventilator-associated events, length of stay, and mortality in patients who were mechanically ventilated. Chest 2016; 149 (06) 1373-1379
  • 5 Devlin JW, Skrobik Y, Gélinas C. et al. Clinical practice guidelines for the prevention and management of pain, agitation/sedation, delirium, immobility, and sleep disruption in adult patients in the ICU. Crit Care Med 2018; 46 (09) e825-e873
  • 6 Beretta L, De Vitis A, Grandi E. Sedation in neurocritical patients: is it useful?. Minerva Anestesiol 2011; 77 (08) 828-834
  • 7 Hukkelhoven CWPM, Steyerberg EW, Farace E, Habbema JDF, Marshall LF, Maas AIR. Regional differences in patient characteristics, case management, and outcomes in traumatic brain injury: experience from the tirilazad trials. J Neurosurg 2002; 97 (03) 549-557
  • 8 Teitelbaum JS, Ayoub O, Skrobik Y. A critical appraisal of sedation, analgesia and delirium in neurocritical care. Can J Neurol Sci 2011; 38 (06) 815-825
  • 9 James ML, Olson DM, Graffagnino C. A pilot study of cerebral and haemodynamic physiological changes during sedation with dexmedetomidine or propofol in patients with acute brain injury. Anaesth Intensive Care 2012; 40 (06) 949-957
  • 10 Tanguy M, Seguin P, Laviolle B, Bleichner JP, Morandi X, Malledant Y. Cerebral microdialysis effects of propofol versus midazolam in severe traumatic brain injury. J Neurotrauma 2012; 29 (06) 1105-1110
  • 11 Pajoumand M, Kufera JA, Bonds BW. et al. Dexmedetomidine as an adjunct for sedation in patients with traumatic brain injury. J Trauma Acute Care Surg 2016; 81 (02) 345-351
  • 12 Hertle DN, Santos E, Hagenston AM. et al. Cerebral glucose metabolism and sedation in brain-injured patients: a microdialysis study. J Neurosurg Anesthesiol 2015; 27 (03) 187-193
  • 13 Hertle DN, Beynon C, Neumann JO. et al. Use of GABAergic sedatives after subarachnoid hemorrhage is associated with worse outcome-preliminary findings. J Clin Anesth 2016; 35: 118-122
  • 14 Hutchens MP, Memtsoudis S, Sadovnikoff N. Propofol for sedation in neuro-intensive care. Neurocrit Care 2006; 4 (01) 54-62
  • 15 Carney N, Totten AM, O'Reilly C. et al. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery 2017; 80: 6-15
  • 16 Parke TJ, Stevens JE, Rice AS. et al. Metabolic acidosis and fatal myocardial failure after propofol infusion in children: five case reports. BMJ 1992; 305 (6854) 613-616
  • 17 Marinella MA. Lactic acidosis associated with propofol. Chest 1996; 109 (01) 292
  • 18 Merz TM, Regli B, Rothen HU, Felleiter P. Propofol infusion syndrome—a fatal case at a low infusion rate. Anesth Analg 2006; 103 (04) 1050
  • 19 Kneiseler G, Bachmann HS, Bechmann LP. et al. A rare case of propofol-induced acute liver failure and literature review. Case Rep Gastroenterol 2010; 4 (01) 57-65
  • 20 Cremer OL, Moons KG, Bouman EA, Kruijswijk JE, de Smet AM, Kalkman CJ. Long-term propofol infusion and cardiac failure in adult head-injured patients. Lancet 2001; 357 (9250) 117-118
  • 21 Hertle DN, Dreier JP, Woitzik J. et al; Cooperative Study of Brain Injury Depolarizations (COSBID). Effect of analgesics and sedatives on the occurrence of spreading depolarizations accompanying acute brain injury. Brain 2012; 135 (Pt 8) 2390-2398
  • 22 Zaccara G, Giannasi G, Oggioni R, Rosati E, Tramacere L, Palumbo P. convulsive status epilepticus study group of the uslcentro Toscana, Italy. Challenges in the treatment of convulsive status epilepticus. Seizure 2017; 47: 17-24
  • 23 Jiang L, Hu M, Lu Y, Cao Y, Chang Y, Dai Z. The protective effects of dexmedetomidine on ischemic brain injury: A meta-analysis. J Clin Anesth 2017; 40: 25-32
  • 24 Mirski MA, Lewin III JJ, Ledroux S. et al. Cognitive improvement during continuous sedation in critically ill, awake and responsive patients: the Acute Neurological ICU Sedation Trial (ANIST). Intensive Care Med 2010; 36 (09) 1505-1513
  • 25 Okazaki T, Hifumi T, Kawakita K. et al. Association between dexmedetomidine use and neurological outcomes in aneurysmal subarachnoid hemorrhage patients: a retrospective observational study. J Crit Care 2018; 44: 111-116
  • 26 Wang X, Ji J, Fen L, Wang A. Effects of dexmedetomidine on cerebral blood flow in critically ill patients with or without traumatic brain injury: a prospective controlled trial. Brain Inj 2013; 27 (13) (14) 1617-1622
  • 27 Himmelseher S, Durieux ME. Revising a dogma: ketamine for patients with neurological injury?. Anesth Analg 2005; 101 (02) 524-534
  • 28 Reinhart KM, Shuttleworth CW. Ketamine reduces deleterious consequences of spreading depolarizations. Exp Neurol 2018; 305: 121-128
  • 29 Rossetti AO, Lowenstein DH. Management of refractory status epilepticus in adults: still more questions than answers. Lancet Neurol 2011; 10 (10) 922-930
  • 30 Yaghoobi S, Khezri MB, Alamouti AM. A pilot study of cerebral and hemodynamic changes during sedation with low dose of thiopental sodium or propofol in patients with acute brain injury. J Clin Diagn Res 2015; 9 (08) UC05-UC07
  • 31 Zhu Y, Wang Y, Du B, Xi X. Could remifentanil reduce duration of mechanical ventilation in comparison with other opioids for mechanically ventilated patients?. A systematic review and meta-analysis. Crit Care 2017; 21 (01) 206
  • 32 Payen JF, Chanques G, Mantz J. et al. Current practices in sedation and analgesia for mechanically ventilated critically ill patients: a prospective multicenter patient-based study. Anesthesiology 2007; 106 (04) 687-695 quiz 891–892
  • 33 Roberts DJ, Hall RI, Kramer AH, Robertson HL, Gallagher CN, Zygun DA. Sedation for critically ill adults with severe traumatic brain injury: a systematic review of randomized controlled trials. Crit Care Med 2011; 39 (12) 2743-2751
  • 34 Belda JF, Soro M, Badenes R. et al. The predictive performance of a pharmacokinetic model for manually adjusted infusion of liquid sevofluorane for use with the Anesthetic-Conserving Device (AnaConDa): a clinical study. Anesth Analg 2008; 106 (04) 1207-1214
  • 35 Soukup J, Schärff K, Kubosch K, Pohl C, Bomplitz M, Kompardt J. State of the art: sedation concepts with volatile anesthetics in critically Ill patients. J Crit Care 2009; 24 (04) 535-544
  • 36 Kim HY, Lee JE, Kim HY, Kim J. Volatile sedation in the intensive care unit: a systematic review and meta-analysis. Medicine (Baltimore) 2017; 96 (49) e8976
  • 37 Kitano H, Kirsch JR, Hurn PD, Murphy SJ. Inhalational anesthetics as neuroprotectants or chemical preconditioning agents in ischemic brain. J Cereb Blood Flow Metab 2007; 27 (06) 1108-1128
  • 38 Yang T, Sun Y, Zhang F. Anti-oxidative aspect of inhaled anesthetic gases against acute brain injury. Med Gas Res 2016; 6 (04) 223-226
  • 39 Bösel J, Purrucker JC, Nowak F. et al. Volatile isoflurane sedation in cerebrovascular intensive care patients using Ana-ConDa(®): effects on cerebral oxygenation, circulation, and pressure. Intensive Care Med 2012; 38 (12) 1955-1964
  • 40 Villa F, Iacca C, Molinari AF. et al. Inhalation versus endovenous sedation in subarachnoid hemorrhage patients: effects on regional cerebral blood flow. Crit Care Med 2012; 40 (10) 2797-2804
  • 41 Bisbal M, Arnal J-M, Passelac A. et al. Efficacy, safety and cost of sedation with sevoflurane in intensive care unit [article in French]. Ann Fr Anesth Reanim 2011; 30 (04) 335-341
  • 42 Purrucker JC, Renzland J, Uhlmann L. et al. Volatile sedation with sevoflurane in intensive care patients with acute stroke or subarachnoid haemorrhage using AnaConDa®: an observational study. Br J Anaesth 2015; 114 (06) 934-943
  • 43 Badenes R, Bilotta F. Inhaled sedation in acute brain injury patients. Br J Anaesth 2016; 116 (06) 883-884
  • 44 Healy RJ, Zorrilla-Vaca A, Ziai W. et al. Glasgow coma scale score fluctuations are inversely associated with a NIRS-based Index of cerebral autoregulation in acutely comatose patients. J Neurosurg Anesthesiol. 2018 May 18. doi:10.1097/ANA.0000000000000513
  • 45 Riker RR, Fugate JE. Participants in the International Multi-disciplinary Consensus Conference on Multimodality Monitoring. Clinical monitoring scales in acute brain injury: assessment of coma, pain, agitation, and delirium. Neurocrit Care 2014; 21 (Suppl. 02) S27-S37
  • 46 Deogaonkar A, Gupta R, DeGeorgia M. et al. Bispectral Index monitoring correlates with sedation scales in brain-injured patients. Crit Care Med 2004; 32 (12) 2403-2406
  • 47 Ogilvie MP, Pereira BM, Ryan ML. et al. Bispectral index to monitor propofol sedation in trauma patients. J Trauma 2011; 71 (05) 1415-1421
  • 48 Kurtz P, Fitts V, Sumer Z. et al. How does care differ for neurological patients admitted to a neurocritical care unit versus a general ICU?. Neurocrit Care 2011; 15 (03) 477-480
  • 49 Lazaridis C, DeSantis SM, McLawhorn M, Krishna V. Liberation of neurosurgical patients from mechanical ventilation and tracheostomy in neurocritical care. J Crit Care 2012; 27 (04) 417.e1-417.e8
  • 50 Mahmoud L, Zullo AR, Thompson BB, Wendell LC. Outcomes of protocolised analgesia and sedation in a neurocritical care unit. Brain Inj 2018; 32 (07) 941-947
  • 51 Hou D, Liu B, Zhang J, Wang Q, Zheng W. Evaluation of the efficacy and safety of short-course deep sedation therapy for the treatment of intracerebral hemorrhage after surgery: a non-randomized control study. Med Sci Monit 2016; 22: 2670-2678
  • 52 Bohman L-E, Heuer G, Macyszyn L. et al. Medical management of compromised brain oxygen in patients with severe traumatic brain injury. Neurocrit Care 2011; 14 (03) 361-369
  • 53 Pascual JL, Georgoff P, Maloney-Wilensky E. et al. Reduced brain tissue oxygen in traumatic brain injury: are most commonly used interventions successful?. J Trauma 2011; 70 (03) 535-546
  • 54 Rhodes JK, Chandrasekaran S, Andrews PJ. Early changes in brain oxygen tension may predict outcome following severe traumatic brain injury. Acta Neurochir Suppl (Wien) 2016; 122: 9-16
  • 55 Yan K, Pang L, Gao H. et al. The influence of sedation level guided by bispectral index on therapeutic effects for patients with severe traumatic brain injury. World Neurosurg 2018; 110: e671-e683
  • 56 Claassen J, Velazquez A, Meyers E. et al. Bedside quantitative electroencephalography improves assessment of consciousness in comatose subarachnoid hemorrhage patients. Ann Neurol 2016; 80 (04) 541-553
  • 57 Olivecrona M, Zetterlund B, Rodling-Wahlström M, Naredi S, Koskinen L-OD. Absence of electroencephalographic seizure activity in patients treated for head injury with an intracranial pressure-targeted therapy. J Neurosurg 2009; 110 (02) 300-305
  • 58 Sharshar T, Citerio G, Andrews PJD. et al. Neurological examination of critically ill patients: a pragmatic approach. Report of an ESICM expert panel. Intensive Care Med 2014; 40 (04) 484-495
  • 59 Marklund N. The neurological wake-up test-a role in neurocritical care monitoring of traumatic brain injury patients?. Front Neurol 2017; 8: 540
  • 60 Augustes R, Ho KM. Meta-analysis of randomised controlled trials on daily sedation interruption for critically ill adult patients. Anaesth Intensive Care 2011; 39 (03) 401-409
  • 61 Baron R, Binder A, Biniek R. et al; DAS-Taskforce 2015. Evidence and consensus based guideline for the management of delirium, analgesia, and sedation in intensive care medicine. Revision 2015 (DAS-Guideline 2015)—short version. Ger Med Sci. 2015 13. Doc19
  • 62 Anifantaki S, Prinianakis G, Vitsaksaki E. et al. Daily interruption of sedative infusions in an adult medical-surgical intensive care unit: randomized controlled trial. J Adv Nurs 2009; 65 (05) 1054-1060
  • 63 Skoglund K, Enblad P, Marklund N. Effects of the neurological wake-up test on intracranial pressure and cerebral perfusion pressure in brain-injured patients. Neurocrit Care 2009; 11 (02) 135-142
  • 64 Skoglund K, Enblad P, Hillered L, Marklund N. The neurological wake-up test increases stress hormone levels in patients with severe traumatic brain injury. Crit Care Med 2012; 40 (01) 216-222
  • 65 Skoglund K, Hillered L, Purins K. et al. The neurological wake-up test does not alter cerebral energy metabolism and oxygenation in patients with severe traumatic brain injury. Neurocrit Care 2014; 20 (03) 413-426
  • 66 Helbok R, Kurtz P, Schmidt MJ. et al. Effects of the neurological wake-up test on clinical examination, intracranial pressure, brain metabolism and brain tissue oxygenation in severely brain-injured patients. Crit Care 2012; 16 (06) R226
  • 67 Esnault P, Montcriol A, D'Aranda E. et al. Early neurological wake-up test in intubated brain-injured patients: a long-term, single-centre experience. Aust Crit Care 2017; 30 (05) 273-278
  • 68 Herzer G, Mirth C, Illievich UM, Voelckel WG, Trimmel H. Analgosedation of adult patients with elevated intracranial pressure: survey of current clinical practice in Austria. Wien Klin Wochenschr 2018; 130 (01) (02) 45-53