CC BY-NC-ND 4.0 · Rev Bras Ortop (Sao Paulo) 2020; 55(03): 323-328
DOI: 10.1055/s-0039-1692711
Artigo Original
Mão
Sociedade Brasileira de Ortopedia e Traumatologia. Published by Thieme Revinter Publicações Ltda Rio de Janeiro, Brazil

Avaliação dos efeitos da natação como reabilitação pós-operatória na regeneração nervosa de ratos da linhagem Wistar submetidos a enxerto de nervos autólogos após lesão do nervo ciático[*]

Article in several languages: português | English
1   Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil
,
Luis Renato Nakachima
1   Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil
,
Marcela Fernandes
1   Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil
,
Carlos Henrique Fernandes
1   Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil
,
João Baptista Gomes dos Santos
1   Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil
,
Sandra Gomes Valente
1   Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil
› Author Affiliations
Further Information

Publication History

13 February 2019

13 May 2019

Publication Date:
25 June 2020 (online)

Resumo

Objetivo Avaliar os efeitos da natação na regeneração nervosa após a lesão do nervo ciático em ratos Wistar.

Métodos Um total de 30 ratos Wistar foram divididos em 3 grupos: grupo Sham + Nat: animais que não foram submetidos à cirurgia de enxerto e foram submetidos à natação (n = 10); grupo Enxerto: animais que foram submetidos à cirurgia de enxerto autólogo de nervo ciático (n = 10); e grupo Enx + Nat: animais submetidos à cirurgia de enxerto autólogo de nervo ciático e à natação (n = 10). Os resultados foram analisados pelo software GraphPad Prism 5.0 (GraphPad Software, San Diego, CA, EUA).

Resultados Na primeira avaliação, todos os valores do índice funcional do ciático (IFC) foram semelhantes (p = 0.609). Após 30 dias do procedimento cirúrgico, foram observadas diferenças entre todas as comparações: Sham + Nat (−34,64 ± 13,89) versus Enxerto (−145,9 ± 26,06), grupos Sham + Nat versus Enx + Nat (−89,40 ± 7,501), grupos Enxerto (−145,9 ± 26,06) versus Enx + Nat (−89,40 ± 7,501). Nas medidas (60 e 90 dias), não houve diferença estatística entre os grupos Enxerto e Enx + Nat, com valores significativamente menores em relação ao grupo controle (p < 0,001). O número de motoneurônios apresentou diferenças nas comparações entre os grupos Sham + Nat e Enxerto (647,1 ± 16,42 versus 563,4 ± 8,07; p < 0,05) e Sham + Nat e Enx + Nat (647,1 ± 16,42 versus 558,8 ± 14,79; p < 0,05), não havendo diferença entre os grupos Enxerto e Enx + Nat.

Conclusão Os animais submetidos ao protocolo de natação após o procedimento de enxerto do nervo ciático não apresentaram diferenças nos valores de IFC e nos números de motoneurônios quando comparados com grupo controle. Portanto, este tipo de protocolo não é eficiente para reabilitação de lesões nervosas periféricas que necessitam de enxerto, sendo necessários novos estudos.

* Trabalho desenvolvido no Departamento de Ortopedia e Traumatologia da Universidade Federal de São Paulo, São Paulo, SP, Brasil


 
  • Referências

  • 1 Bonetti LV, Malysz T, Ilha J, Barbosa S, Achaval M, Faccioni-Heuser MC. The Effects of Two Different Exercise Programs on the Ultrastructural Features of the Sciatic Nerve and Soleus Muscle After Sciatic Crush. Anat Rec (Hoboken) 2017; 300 (09) 1654-1661
  • 2 Torres RY, Miranda GE. Epidemiology of Traumatic Peripheral Nerve Injuries Evaluated by Electrodiagnostic Studies in a Tertiary Care Hospital Clinic. Bol Asoc Med P R 2015; 107 (03) 79-84
  • 3 Caierao QM, Betini J, Teodori RM, Minamoto VB. The effect of time interval between electrical stimulation on the denervated rat muscle. Rev Bras Fisioter 2008; 12 (02) 143-148
  • 4 Malanotte JA, Kakihata CMM, Karvat J, Brancalhão RMC, Ribeiro LFC, Bertolini GRF. Jumping in aquatic environment after sciatic nerve compression: nociceptive evaluation and morphological characteristics of the soleus muscle of Wistar rats. Einstein (Sao Paulo) 2017; 15 (01) 77-84
  • 5 Wong KH, Naidu M, David P. , et al. Peripheral nerve regeneration following crush injury to rat peroneal nerve by aqueous extract of medicinal mushroom Hericium erinaceus (Bull.: Fr) Pers. (Aphyllophoromycetideae). Evid Based Complement Alternat Med 2011; 2011: 580752
  • 6 Medeiros A, Oliveira EM, Gianolla R, Casarini DE, Negrão CE, Brum PC. Swimming training increases cardiac vagal activity and induces cardiac hypertrophy in rats. Braz J Med Biol Res 2004; 37 (12) 1909-1917
  • 7 Sarikcioglu L, Oguz N. Exercise training and axonal regeneration after sciatic nerve injury. Int J Neurosci 2001; 109 (3-4): 173-177
  • 8 Doyle LMF, Roberts BL. Exercise enhances axonal growth and functional recovery in the regenerating spinal cord. Neuroscience 2006; 141 (01) 321-327
  • 9 Teodori RM, Betini J, de Oliveira LS, Sobral LL, Takeda SY, de Lima Montebelo MI. Swimming exercise in the acute or late phase after sciatic nerve crush accelerates nerve regeneration. Neural Plast 2011; 2011: 783901
  • 10 Kavlak E, Belge F, Ünsal C, Üner AG, Cavlak U, Cömlekçi S. Effects of pulsed electromagnetic field and swimming exercise on rats with experimental sciatic nerve injury. J Phys Ther Sci 2014; 26 (09) 1355-1361
  • 11 Liao CF, Yang TY, Chen YH, Yao CH, Way TD, Chen YS. Effects of swimming exercise on nerve regeneration in a rat sciatic nerve transection model. Biomedicine (Taipei) 2017; 7 (01) 3
  • 12 Rocha JC. Hidroginástica. Teoria e prática. Rio de Janeiro: Sprint; 1994
  • 13 Ruoti RG, Morris DM, Cole AJ. Reabilitação Aquática. São Paulo: Manole; 2000
  • 14 van Meeteren NL, Brakkee JH, Helders PJGW, Gispen WH. The effect of exercise training on functional recovery after sciatic nerve crush in the rat. J Peripher Nerv Syst 1998; 3 (04) 277-282
  • 15 Oliveira LS, Sobral LL, Takeda SY. , et al. Estimulación eléctrica y natación en la fase aguda de la axonotmesis: influencia sobre la regeneración nerviosa y la recuperación funcional. Rev Neurol 2008; 47 (01) 11-15
  • 16 Herbison GJ, Jaweed MM, Ditunno JF. Effect of swimming on reinnervation of rat skeletal muscle. J Neurol Neurosurg Psychiatry 1974; 37 (11) 1247-1251
  • 17 van Meeteren NL, Brakkee JH, Hamers FP, Helders PJ, Gispen WH. Exercise training improves functional recovery and motor nerve conduction velocity after sciatic nerve crush lesion in the rat. Arch Phys Med Rehabil 1997; 78 (01) 70-77
  • 18 Fernandes M, Valente SG, Fernandes MJ. , et al. Bone marrow cells are able to increase vessels number during repair of sciatic nerve lesion. J Neurosci Methods 2008; 170 (01) 16-24
  • 19 Roth F, Fernandes M, Valente SG. , et al. Platelet-rich fibrin conduits as an alternative to nerve autografts for peripheral nerve repair. J Reconstr Microsurg 2017; 33 (08) 549-556
  • 20 Fernandes M, Valente SG, Amado D. , et al. Estudo comparativo entre enxerto autógeno e enxerto muscular coberto com tubo de veia autógeno em nervos tibiais de ratos Wistar, utilizando o fluoro-gold® como marcador neuronal. Acta Ortop Bras 2007; 15 (02) 97-100
  • 21 Ilha J, Araujo RT, Malysz T. , et al. Endurance and resistance exercise training programs elicit specific effects on sciatic nerve regeneration after experimental traumatic lesion in rats. Neurorehabil Neural Repair 2008; 22 (04) 355-366
  • 22 Sobral LL, Oliveira LS, Takeda SY. , et al. Immediate versus late exercise for rat sciatic nerve regeneration after axonotmesis: histomorphometric and functional analysis. Rev Bras Fisioter 2008; 12 (04) 311-316
  • 23 Asensio-Pinilla E, Udina E, Jaramillo J, Navarro X. Electrical stimulation combined with exercise increase axonal regeneration after peripheral nerve injury. Exp Neurol 2009; 219 (01) 258-265
  • 24 Jang SH, Lee JH. Effects of physical exercise on the functional recovery of rat hindlimbs with impairments of the sciatic nerve as assessed by 2D video analysis. J Phys Ther Sci 2015; 27 (03) 935-938
  • 25 Krakowiak J, Liu C, Papudesu C, Ward PJ, Wilhelm JC, English AW. Neuronal BDNF signaling is necessary for the effects of treadmill exercise on synaptic stripping of axotomized motoneurons. Neural Plast 2015; 2015: 392591
  • 26 Dash H, Kononov A, Prayson RA, Petras S, Browne EZ. Evaluation of nerve recovery from minimal-duration crush injury. Ann Plast Surg 1996; 37 (05) 526-531
  • 27 Dellon AL, Mackinnon SE. Sciatic nerve regeneration in the rat. Validity of walking track assessment in the presence of chronic contractures. Microsurgery 1989; 10 (03) 220-225