Neuropediatrics 2019; 50(05): 280-293
DOI: 10.1055/s-0039-1693149
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Neonatal Seizures—Are We there Yet?

1   Department of Neuropediatrics, University Children's Hospital, Zurich, Switzerland
,
Bernhard Schmitt
1   Department of Neuropediatrics, University Children's Hospital, Zurich, Switzerland
,
Barbara Plecko
1   Department of Neuropediatrics, University Children's Hospital, Zurich, Switzerland
2   Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
,
Ronit M. Pressler
3   Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
4   UCL Great Ormond Street Institute for Child Health, London, United Kingdom
,
Gabriele Wohlrab
1   Department of Neuropediatrics, University Children's Hospital, Zurich, Switzerland
,
Katrin Klebermass-Schrehof
5   Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department of Pediatrics, Medical University Vienna, Vienna, Austria
,
Cornelia Hagmann
6   Department of Neonatology and Pediatric Intensive Care, University Children's Hospital, Zurich, Switzerland
,
Francesco Pisani
7   Child Neuropsychiatry Unit, University-Hospital of Parma, Parma, Italy
,
Geraldine B. Boylan
8   Irish Centre for Fetal and Neonatal Translational Research (INFANT), University College Cork, Ireland
9   Department of Pediatrics and Child Health, University College Cork, Cork, Ireland
› Institutsangaben
Funding This work did not receive support from a grant or otherwise.
Weitere Informationen

Publikationsverlauf

16. Oktober 2018

30. Mai 2019

Publikationsdatum:
24. Juli 2019 (online)

Abstract

Neonatal seizures are the most prevalent and distinctive sign of neurologic dysfunction in early life and pose an immense challenge for clinicians. Improvements in neonatal care have increased the survival rate of extremely premature infants, considerably changing the spectrum of underlying etiologies, and instigating a gradual shift from mortality to morbidity. Recognizing neonatal seizures can be challenging due to variability in presentation but clinical features can often provide valuable clues about etiology. Yet, the majority of neonatal seizures are subclinical. Even though conventional electroencephalography (EEG) with simultaneous video detection of seizures still represents the diagnostic gold standard, continuous monitoring using a one- to two-channel amplitude-integrated EEG with concurrent unprocessed EEG can be crucial for early recognition and intervention. Furthermore, tremendous progress has been made in neuroimaging, and all infants with seizures should have a magnetic resonance imaging (MRI) to help identify the underlying etiology. While the majority of neonatal seizures are caused by hypoxic-ischemic events, stroke, hemorrhage, or infection, approximately 15% of patients will require more sophisticated algorithms for diagnostic workup, including metabolic and genetic screening. These recent developments have led to renew interest in the classification of neonatal seizures, which aim to help identify etiology and guide appropriate therapeutic and prognostic decisions. In this review, we outline recent progress made in the etiology, diagnosis, and treatment of neonatal seizures and highlight areas that deserve further research.

Note

Part of this work was presented at the Symposium Neonatal seizures—update, in Zurich, Switzerland, June 24, 2016.


 
  • References

  • 1 Volpe JJ. Neurology of the Newborn. 5th Edition. Philadelphia, PA: Elsevier Ltd.; 2008
  • 2 Pisani F, Cerminara C, Fusco C, Sisti L. Neonatal status epilepticus vs recurrent neonatal seizures: clinical findings and outcome. Neurology 2007; 69 (23) 2177-2185
  • 3 Pisani F, Barilli AL, Sisti L, Bevilacqua G, Seri S. Preterm infants with video-EEG confirmed seizures: outcome at 30 months of age. Brain Dev 2008; 30 (01) 20-30
  • 4 Berry K, Pesko MF, Hesdorffer DC, Shellhaas RA, Seirup JK, Grinspan ZM. An evaluation of national birth certificate data for neonatal seizure epidemiology. Epilepsia 2017; 58 (03) 446-455
  • 5 Lanska MJ, Lanska DJ, Baumann RJ, Kryscio RJ. A population-based study of neonatal seizures in Fayette County, Kentucky. Neurology 1995; 45 (04) 724-732
  • 6 Glass HC, Shellhaas RA, Wusthoff CJ. , et al; Neonatal Seizure Registry Study Group. Contemporary profile of seizures in neonates: a prospective cohort study. J Pediatr 2016; 174: 98-103.e1
  • 7 Saliba RM, Annegers FJ, Waller DK, Tyson JE, Mizrahi EM. Risk factors for neonatal seizures: a population-based study, Harris County, Texas, 1992-1994. Am J Epidemiol 2001; 154 (01) 14-20
  • 8 Ronen GM, Buckley D, Penney S, Streiner DL. Long-term prognosis in children with neonatal seizures: a population-based study. Neurology 2007; 69 (19) 1816-1822
  • 9 Kohelet D, Shochat R, Lusky A, Reichman B. ; Israel Neonatal Network. Risk factors for neonatal seizures in very low birthweight infants: population-based survey. J Child Neurol 2004; 19 (02) 123-128
  • 10 Ramantani G. Neonatal epilepsy and underlying aetiology: to what extent do seizures and EEG abnormalities influence outcome?. Epileptic Disord 2013; 15 (04) 365-375
  • 11 Silverstein FS, Jensen FE. Neonatal seizures. Ann Neurol 2007; 62 (02) 112-120
  • 12 Boylan GB, Stevenson NJ, Vanhatalo S. Monitoring neonatal seizures. Semin Fetal Neonatal Med 2013; 18 (04) 202-208
  • 13 Mizrahi EM, Kellaway P. Characterization and classification of neonatal seizures. Neurology 1987; 37 (12) 1837-1844
  • 14 Berg AT, Berkovic SF, Brodie MJ. , et al. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005-2009. Epilepsia 2010; 51 (04) 676-685
  • 15 From the Commission on Classification and Terminology of the International League Against Epilepsy. Proposal for revised clinical and electroencephalographic classification of epileptic seizures. Epilepsia 1981; 22 (04) 489-501
  • 16 Volpe JJ. Neonatal seizures: current concepts and revised classification. Pediatrics 1989; 84 (03) 422-428
  • 17 Fisher RS, Cross JH, French JA. , et al. Operational classification of seizure types by the International League against Epilepsy: position paper of the ILAE Commission for Classification and Terminology. Epilepsia 2017; 58 (04) 522-530
  • 18 Fisher RS, Cross JH, D'Souza C. , et al. Instruction manual for the ILAE 2017 operational classification of seizure types. Epilepsia 2017; 58 (04) 531-542
  • 19 Sivaswamy L. Approach to neonatal seizures. Clin Pediatr (Phila) 2012; 51 (05) 415-425
  • 20 Nagarajan L, Palumbo L, Ghosh S. Classification of clinical semiology in epileptic seizures in neonates. Eur J Paediatr Neurol 2012; 16 (02) 118-125
  • 21 Shellhaas RA, Wusthoff CJ, Tsuchida TN. , et al; Neonatal Seizure Registry. Profile of neonatal epilepsies: characteristics of a prospective US cohort. Neurology 2017; 89 (09) 893-899
  • 22 Grinton BE, Heron SE, Pelekanos JT. , et al. Familial neonatal seizures in 36 families: clinical and genetic features correlate with outcome. Epilepsia 2015; 56 (07) 1071-1080
  • 23 Watanabe K. Seizures in the newborn and young infants. Folia Psychiatr Neurol Jpn 1981; 35 (03) 275-280
  • 24 Van Hove JLK, Lohr NJ. Metabolic and monogenic causes of seizures in neonates and young infants. Mol Genet Metab 2011; 104 (03) 214-230
  • 25 Ronen GM, Rosales TO, Connolly M, Anderson VE, Leppert M. Seizure characteristics in chromosome 20 benign familial neonatal convulsions. Neurology 1993; 43 (07) 1355-1360
  • 26 Zara F, Specchio N, Striano P. , et al. Genetic testing in benign familial epilepsies of the first year of life: clinical and diagnostic significance. Epilepsia 2013; 54 (03) 425-436
  • 27 Soldovieri MV, Boutry-Kryza N, Milh M. , et al. Novel KCNQ2 and KCNQ3 mutations in a large cohort of families with benign neonatal epilepsy: first evidence for an altered channel regulation by syntaxin-1A. Hum Mutat 2014; 35 (03) 356-367
  • 28 Pisano T, Numis AL, Heavin SB. , et al. Early and effective treatment of KCNQ2 encephalopathy. Epilepsia 2015; 56 (05) 685-691
  • 29 Concolino D, Iembo MA, Rossi E. , et al. Familial pericentric inversion of chromosome 5 in a family with benign neonatal convulsions. J Med Genet 2002; 39 (03) 214-216
  • 30 Vigevano F. Benign familial infantile seizures. Brain Dev 2005; 27 (03) 172-177
  • 31 Nunes ML, Yozawitz EG, Zuberi S. , et al; Task Force on Neonatal Seizures, ILAE Commission on Classification & Terminology. Neonatal seizures: is there a relationship between ictal electroclinical features and etiology? A critical appraisal based on a systematic literature review. Epilepsia Open 2019; 4 (01) 10-29
  • 32 Cusmai R, Martinelli D, Moavero R. , et al. Ketogenic diet in early myoclonic encephalopathy due to non ketotic hyperglycinemia. Eur J Paediatr Neurol 2012; 16 (05) 509-513
  • 33 Porri S, Fluss J, Plecko B, Paschke E, Korff CM, Kern I. Positive outcome following early diagnosis and treatment of pyridoxal-5′-phosphate oxidase deficiency: a case report. Neuropediatrics 2014; 45 (01) 64-68
  • 34 Schulzke S, Weber P, Luetschg J, Fahnenstich H. Incidence and diagnosis of unilateral arterial cerebral infarction in newborn infants. J Perinat Med 2005; 33 (02) 170-175
  • 35 Low E, Mathieson SR, Stevenson NJ. , et al. Early postnatal EEG features of perinatal arterial ischaemic stroke with seizures. PLoS One 2014; 9 (07) e100973
  • 36 Weckhuysen S, Ivanovic V, Hendrickx R. , et al; KCNQ2 Study Group. Extending the KCNQ2 encephalopathy spectrum: clinical and neuroimaging findings in 17 patients. Neurology 2013; 81 (19) 1697-1703
  • 37 Serino D, Specchio N, Pontrelli G, Vigevano F, Fusco L. Video/EEG findings in a KCNQ2 epileptic encephalopathy: a case report and revision of literature data. Epileptic Disord 2013; 15 (02) 158-165
  • 38 Numis AL, Angriman M, Sullivan JE. , et al. KCNQ2 encephalopathy: delineation of the electroclinical phenotype and treatment response. Neurology 2014; 82 (04) 368-370
  • 39 Schmitt B, Baumgartner M, Mills PB. , et al. Seizures and paroxysmal events: symptoms pointing to the diagnosis of pyridoxine-dependent epilepsy and pyridoxine phosphate oxidase deficiency. Dev Med Child Neurol 2010; 52 (07) e133-e142
  • 40 Milh M, Villeneuve N, Chouchane M. , et al. Epileptic and nonepileptic features in patients with early onset epileptic encephalopathy and STXBP1 mutations. Epilepsia 2011; 52 (10) 1828-1834
  • 41 Mizrahi EM, Kellaway P. Diagnosis and Management of Neonatal Seizures. Philadelphia, PA: Lippincott-Raven Publishers; 1998
  • 42 Tsuchida TN, Wusthoff CJ, Shellhaas RA. , et al; American Clinical Neurophysiology Society Critical Care Monitoring Committee. American clinical neurophysiology society standardized EEG terminology and categorization for the description of continuous EEG monitoring in neonates: report of the American Clinical Neurophysiology Society critical care monitoring committee. J Clin Neurophysiol 2013; 30 (02) 161-173
  • 43 Nagarajan L, Palumbo L, Ghosh S. Brief electroencephalography rhythmic discharges (BERDs) in the neonate with seizures: their significance and prognostic implications. J Child Neurol 2011; 26 (12) 1529-1533
  • 44 Shewmon DA. What is a neonatal seizure? Problems in definition and quantification for investigative and clinical purposes. J Clin Neurophysiol 1990; 7 (03) 315-368
  • 45 Fenichel GM. Neonatal Neurology. 4th ed. London, United Kingdom: Churchill Livingstone; 2006
  • 46 Scher MS, Hamid MY, Steppe DA, Beggarly ME, Painter MJ. Ictal and interictal electrographic seizure durations in preterm and term neonates. Epilepsia 1993; 34 (02) 284-288
  • 47 Nagarajan L, Ghosh S, Palumbo L. Ictal electroencephalograms in neonatal seizures: characteristics and associations. Pediatr Neurol 2011; 45 (01) 11-16
  • 48 Ohtahara S, Yamatogi Y. Ohtahara syndrome: with special reference to its developmental aspects for differentiating from early myoclonic encephalopathy. Epilepsy Res 2006; 70 (Suppl. 01) S58-S67
  • 49 Djukic A, Lado FA, Shinnar S, Moshé SL. Are early myoclonic encephalopathy (EME) and the Ohtahara syndrome (EIEE) independent of each other?. Epilepsy Res 2006; 70 (Suppl. 01) S68-S76
  • 50 Yamatogi Y, Ohtahara S. Early-infantile epileptic encephalopathy with suppression-bursts, Ohtahara syndrome; its overview referring to our 16 cases. Brain Dev 2002; 24 (01) 13-23
  • 51 Beal JC, Cherian K, Moshe SL. Early-onset epileptic encephalopathies: Ohtahara syndrome and early myoclonic encephalopathy. Pediatr Neurol 2012; 47 (05) 317-323
  • 52 Olson HE, Kelly M, LaCoursiere CM. , et al. Genetics and genotype-phenotype correlations in early onset epileptic encephalopathy with burst suppression. Ann Neurol 2017; 81 (03) 419-429
  • 53 Nakamura K, Kato M, Osaka H. , et al. Clinical spectrum of SCN2A mutations expanding to Ohtahara syndrome. Neurology 2013; 81 (11) 992-998
  • 54 Pavone P, Spalice A, Polizzi A, Parisi P, Ruggieri M. Ohtahara syndrome with emphasis on recent genetic discovery. Brain Dev 2012; 34 (06) 459-468
  • 55 Saitsu H, Kato M, Mizuguchi T. , et al. De novo mutations in the gene encoding STXBP1 (MUNC18-1) cause early infantile epileptic encephalopathy. Nat Genet 2008; 40 (06) 782-788
  • 56 Saitsu H, Kato M, Okada I. , et al. STXBP1 mutations in early infantile epileptic encephalopathy with suppression-burst pattern. Epilepsia 2010; 51 (12) 2397-2405
  • 57 Marques I, Sá MJ, Soares G. , et al. Unraveling the pathogenesis of ARX polyalanine tract variants using a clinical and molecular interfacing approach. Mol Genet Genomic Med 2015; 3 (03) 203-214
  • 58 Kodera H, Ohba C, Kato M. , et al. De novo GABRA1 mutations in Ohtahara and West syndromes. Epilepsia 2016; 57 (04) 566-573
  • 59 Ohba C, Kato M, Takahashi N. , et al. De novo KCNT1 mutations in early-onset epileptic encephalopathy. Epilepsia 2015; 56 (09) e121-e128
  • 60 Allen NM, Conroy J, Shahwan A. , et al. Unexplained early onset epileptic encephalopathy: exome screening and phenotype expansion. Epilepsia 2016; 57 (01) e12-e17
  • 61 Allen AS, Berkovic SF, Cossette P. , et al; Epi4K Consortium; Epilepsy Phenome/Genome Project. De novo mutations in epileptic encephalopathies. Nature 2013; 501 (7466): 217-221
  • 62 Veeramah KR, Johnstone L, Karafet TM. , et al. Exome sequencing reveals new causal mutations in children with epileptic encephalopathies. Epilepsia 2013; 54 (07) 1270-1281
  • 63 Berg AT, Coryell J, Saneto RP. , et al. Early-life epilepsies and the emerging role of genetic testing. JAMA Pediatr 2017; 171 (09) 863-871
  • 64 Epi PM. ; EpiPM Consortium. A roadmap for precision medicine in the epilepsies. Lancet Neurol 2015; 14 (12) 1219-1228
  • 65 Toet MC, van der Meij W, de Vries LS, Uiterwaal CSPM, van Huffelen KC. Comparison between simultaneously recorded amplitude integrated electroencephalogram (cerebral function monitor) and standard electroencephalogram in neonates. Pediatrics 2002; 109 (05) 772-779
  • 66 Murray DM, Boylan GB, Ali I, Ryan CA, Murphy BP, Connolly S. Defining the gap between electrographic seizure burden, clinical expression and staff recognition of neonatal seizures. Arch Dis Child Fetal Neonatal Ed 2008; 93 (03) F187-F191
  • 67 Frenkel N, Friger M, Meledin I. , et al. Neonatal seizure recognition--comparative study of continuous-amplitude integrated EEG versus short conventional EEG recordings. Clin Neurophysiol 2011; 122 (06) 1091-1097
  • 68 Rennie JM, Chorley G, Boylan GB, Pressler R, Nguyen Y, Hooper R. Non-expert use of the cerebral function monitor for neonatal seizure detection. Arch Dis Child Fetal Neonatal Ed 2004; 89 (01) F37-F40
  • 69 Shellhaas RA, Soaita AI, Clancy RR. Sensitivity of amplitude-integrated electroencephalography for neonatal seizure detection. Pediatrics 2007; 120 (04) 770-777
  • 70 Shah DK, Mackay MT, Lavery S. , et al. Accuracy of bedside electroencephalographic monitoring in comparison with simultaneous continuous conventional electroencephalography for seizure detection in term infants. Pediatrics 2008; 121 (06) 1146-1154
  • 71 Shellhaas RA, Barks AK. Impact of amplitude-integrated electroencephalograms on clinical care for neonates with seizures. Pediatr Neurol 2012; 46 (01) 32-35
  • 72 Temko A, Lightbody G. Detecting neonatal seizures with computer algorithms. J Clin Neurophysiol 2016; 33 (05) 394-402
  • 73 Shah DK, Boylan GB, Rennie JM. Monitoring of seizures in the newborn. Arch Dis Child Fetal Neonatal Ed 2012; 97 (01) F65-F69
  • 74 van Rooij LGM, Toet MC, van Huffelen AC. , et al. Effect of treatment of subclinical neonatal seizures detected with aEEG: randomized, controlled trial. Pediatrics 2010; 125 (02) e358-e366
  • 75 Toet MC, Groenendaal F, Osredkar D, van Huffelen AC, de Vries LS. Postneonatal epilepsy following amplitude-integrated EEG-detected neonatal seizures. Pediatr Neurol 2005; 32 (04) 241-247
  • 76 Srinivasakumar P, Zempel J, Trivedi S. , et al. Treating EEG seizures in hypoxic ischemic encephalopathy: a randomized controlled trial. Pediatrics 2015; 136 (05) e1302-e1309
  • 77 Tekgul H, Gauvreau K, Soul J. , et al. The current etiologic profile and neurodevelopmental outcome of seizures in term newborn infants. Pediatrics 2006; 117 (04) 1270-1280
  • 78 Barnette AR, Horbar JD, Soll RF. , et al. Neuroimaging in the evaluation of neonatal encephalopathy. Pediatrics 2014; 133 (06) e1508-e1517
  • 79 Weeke LC, Van Rooij LGM, Toet MC, Groenendaal F, de Vries LS. Neuroimaging in neonatal seizures. Epileptic Disord 2015; 17 (01) 1-11 , quiz 11
  • 80 Weeke LC, Groenendaal F, Toet MC. , et al. The aetiology of neonatal seizures and the diagnostic contribution of neonatal cerebral magnetic resonance imaging. Dev Med Child Neurol 2015; 57 (03) 248-256
  • 81 Osmond E, Billetop A, Jary S, Likeman M, Thoresen M, Luyt K. Neonatal seizures: magnetic resonance imaging adds value in the diagnosis and prediction of neurodisability. Acta Paediatr 2014; 103 (08) 820-826
  • 82 Zand DJ, Simon EM, Pulitzer SB. , et al. In vivo pyruvate detected by MR spectroscopy in neonatal pyruvate dehydrogenase deficiency. AJNR Am J Neuroradiol 2003; 24 (07) 1471-1474
  • 83 Bianchi MC, Tosetti M, Battini R. , et al. Proton MR spectroscopy of mitochondrial diseases: analysis of brain metabolic abnormalities and their possible diagnostic relevance. AJNR Am J Neuroradiol 2003; 24 (10) 1958-1966
  • 84 Rincon SP, Blitstein MBK, Caruso PA, González RG, Thibert RL, Ratai E-M. The Use of Magnetic Resonance Spectroscopy in the Evaluation of Pediatric Patients With Seizures. Pediatr Neurol 2016; 58: 57-66
  • 85 Barkovich AJ, Baranski K, Vigneron D. , et al. Proton MR spectroscopy for the evaluation of brain injury in asphyxiated, term neonates. AJNR Am J Neuroradiol 1999; 20 (08) 1399-1405
  • 86 Amess PN, Penrice J, Wylezinska M. , et al. Early brain proton magnetic resonance spectroscopy and neonatal neurology related to neurodevelopmental outcome at 1 year in term infants after presumed hypoxic-ischaemic brain injury. Dev Med Child Neurol 1999; 41 (07) 436-445
  • 87 Hanrahan JD, Cox IJ, Azzopardi D. , et al. Relation between proton magnetic resonance spectroscopy within 18 hours of birth asphyxia and neurodevelopment at 1 year of age. Dev Med Child Neurol 1999; 41 (02) 76-82
  • 88 Cheong JLY, Cady EB, Penrice J, Wyatt JS, Cox IJ, Robertson NJ. Proton MR spectroscopy in neonates with perinatal cerebral hypoxic-ischemic injury: metabolite peak-area ratios, relaxation times, and absolute concentrations. AJNR Am J Neuroradiol 2006; 27 (07) 1546-1554
  • 89 Fan G, Wu Z, Chen L, Guo Q, Ye B, Mao J. Hypoxia-ischemic encephalopathy in full-term neonate: correlation proton MR spectroscopy with MR imaging. Eur J Radiol 2003; 45 (02) 91-98
  • 90 Lynch NE, Stevenson NJ, Livingstone V, Murphy BP, Rennie JM, Boylan GB. The temporal evolution of electrographic seizure burden in neonatal hypoxic ischemic encephalopathy. Epilepsia 2012; 53 (03) 549-557
  • 91 Painter MJ, Scher MS, Stein AD. , et al. Phenobarbital compared with phenytoin for the treatment of neonatal seizures. N Engl J Med 1999; 341 (07) 485-489
  • 92 Boylan GB, Rennie JM, Pressler RM, Wilson G, Morton M, Binnie CD. Phenobarbitone, neonatal seizures, and video-EEG. Arch Dis Child Fetal Neonatal Ed 2002; 86 (03) F165-F170
  • 93 Pressler RM, Boylan GB, Marlow N. , et al; NEonatal seizure treatment with Medication Off-patent (NEMO) consortium. Bumetanide for the treatment of seizures in newborn babies with hypoxic ischaemic encephalopathy (NEMO): an open-label, dose finding, and feasibility phase 1/2 trial. Lancet Neurol 2015; 14 (05) 469-477
  • 94 Abend NS, Gutierrez-Colina AM, Monk HM, Dlugos DJ, Clancy RR. Levetiracetam for treatment of neonatal seizures. J Child Neurol 2011; 26 (04) 465-470
  • 95 Mathieson SR, Stevenson NJ, Low E. , et al. Validation of an automated seizure detection algorithm for term neonates. Clin Neurophysiol 2016; 127 (01) 156-168
  • 96 Efficacy of intravenous levetiracetam in neonatal seizures (NEOLEV2). Available from: https://clinicaltrials.gov/ct2/show/NCT01720667
  • 97 Low E, Boylan GB, Mathieson SR. , et al. Cooling and seizure burden in term neonates: an observational study. Arch Dis Child Fetal Neonatal Ed 2012; 97 (04) F267-F272
  • 98 Wusthoff CJ, Dlugos DJ, Gutierrez-Colina A. , et al. Electrographic seizures during therapeutic hypothermia for neonatal hypoxic-ischemic encephalopathy. J Child Neurol 2011; 26 (06) 724-728
  • 99 Glass HC, Wusthoff CJ, Shellhaas RA. , et al. Risk factors for EEG seizures in neonates treated with hypothermia: a multicenter cohort study. Neurology 2014; 82 (14) 1239-1244
  • 100 Kharoshankaya L, Stevenson NJ, Livingstone V. , et al. Seizure burden and neurodevelopmental outcome in neonates with hypoxic-ischemic encephalopathy. Dev Med Child Neurol 2016; 58 (12) 1242-1248
  • 101 Dulac O, Plecko B, Gataullina S, Wolf NI. Occasional seizures, epilepsy, and inborn errors of metabolism. Lancet Neurol 2014; 13 (07) 727-739
  • 102 Scheffer IE. Epilepsy genetics revolutionizes clinical practice. Neuropediatrics 2014; 45 (02) 70-74
  • 103 Campistol J, Plecko B. Treatable newborn and infant seizures due to inborn errors of metabolism. Epileptic Disord 2015; 17 (03) 229-242
  • 104 Stockler S, Plecko B, Gospe Jr SM. , et al. Pyridoxine dependent epilepsy and antiquitin deficiency: clinical and molecular characteristics and recommendations for diagnosis, treatment and follow-up. Mol Genet Metab 2011; 104 (1,2): 48-60
  • 105 Mills PB, Camuzeaux SSM, Footitt EJ. , et al. Epilepsy due to PNPO mutations: genotype, environment and treatment affect presentation and outcome. Brain 2014; 137 (Pt 5): 1350-1360
  • 106 Darin N, Reid E, Prunetti L. , et al. Mutations in PROSC Disrupt Cellular Pyridoxal Phosphate Homeostasis and Cause Vitamin-B6-Dependent Epilepsy. Am J Hum Genet 2016; 99 (06) 1325-1337
  • 107 Plecko B, Zweier M, Begemann A. , et al. Confirmation of mutations in PROSC as a novel cause of vitamin B 6 -dependent epilepsy. J Med Genet 2017; 54 (12) 809-814
  • 108 Baumgartner-Sigl S, Haberlandt E, Mumm S. , et al. Pyridoxine-responsive seizures as the first symptom of infantile hypophosphatasia caused by two novel missense mutations (c.677T>C, p.M226T; c.1112C>T, p.T371I) of the tissue-nonspecific alkaline phosphatase gene. Bone 2007; 40 (06) 1655-1661
  • 109 Stence NV, Coughlin II CR, Fenton LZ, Thomas JA. Distinctive pattern of restricted diffusion in a neonate with molybdenum cofactor deficiency. Pediatr Radiol 2013; 43 (07) 882-885
  • 110 Schwahn BC, Van Spronsen FJ, Belaidi AA. , et al. Efficacy and safety of cyclic pyranopterin monophosphate substitution in severe molybdenum cofactor deficiency type A: a prospective cohort study. Lancet 2015; 386 (10007): 1955-1963
  • 111 McTague A, Howell KB, Cross JH, Kurian MA, Scheffer IE. The genetic landscape of the epileptic encephalopathies of infancy and childhood. Lancet Neurol 2016; 15 (03) 304-316
  • 112 Stamberger H, Nikanorova M, Willemsen MH. , et al. STXBP1 encephalopathy: A neurodevelopmental disorder including epilepsy. Neurology 2016; 86 (10) 954-962
  • 113 Trump N, McTague A, Brittain H. , et al. Improving diagnosis and broadening the phenotypes in early-onset seizure and severe developmental delay disorders through gene panel analysis. J Med Genet 2016; 53 (05) 310-317
  • 114 Pisani F, Percesepe A, Spagnoli C. Genetic diagnosis in neonatal-onset epilepsies: Back to the future. Eur J Paediatr Neurol 2018; 22 (03) 354-357
  • 115 Pressler RM, Mangum B. Newly emerging therapies for neonatal seizures. Semin Fetal Neonatal Med 2013; 18 (04) 216-223
  • 116 Booth D, Evans DJ. Anticonvulsants for neonates with seizures. Cochrane Database Syst Rev 2004; (04) CD004218
  • 117 Weeke LC, Toet MC, van Rooij LGM. , et al. Lidocaine response rate in aEEG-confirmed neonatal seizures: Retrospective study of 413 full-term and preterm infants. Epilepsia 2016; 57 (02) 233-242
  • 118 van Rooij LGM, Toet MC, Rademaker KMA, Groenendaal F, de Vries LS. Cardiac arrhythmias in neonates receiving lidocaine as anticonvulsive treatment. Eur J Pediatr 2004; 163 (11) 637-641
  • 119 Donovan MD, Griffin BT, Kharoshankaya L, Cryan JF, Boylan GB. Pharmacotherapy for neonatal seizures: current knowledge and future perspectives. Drugs 2016; 76 (06) 647-661
  • 120 van den Broek MPH, Rademaker CMA, van Straaten HLM. , et al. Anticonvulsant treatment of asphyxiated newborns under hypothermia with lidocaine: efficacy, safety and dosing. Arch Dis Child Fetal Neonatal Ed 2013; 98 (04) F341-F345
  • 121 van den Broek MPH, Huitema ADR, van Hasselt JGC. , et al. Lidocaine (lignocaine) dosing regimen based upon a population pharmacokinetic model for preterm and term neonates with seizures. Clin Pharmacokinet 2011; 50 (07) 461-469
  • 122 Weeke LC, Schalkwijk S, Toet MC, van Rooij LGM, de Vries LS, van den Broek MPH. Lidocaine-associated cardiac events in newborns with seizures: incidence, symptoms and contributing factors. Neonatology 2015; 108 (02) 130-136
  • 123 Ramantani G, Ikonomidou C, Walter B, Rating D, Dinger J. Levetiracetam: safety and efficacy in neonatal seizures. Eur J Paediatr Neurol 2011; 15 (01) 1-7
  • 124 Fürwentsches A, Bussmann C, Ramantani G. , et al. Levetiracetam in the treatment of neonatal seizures: a pilot study. Seizure 2010; 19 (03) 185-189
  • 125 Glass HC, Poulin C, Shevell MI. Topiramate for the treatment of neonatal seizures. Pediatr Neurol 2011; 44 (06) 439-442
  • 126 Soul JS, Bergin AM, Stopp C. , et al. Randomized, controlled, double-blind trial of bumetanide for neonatal seizures. Abstract 2.426. Washington DC: 2017
  • 127 Haas RH, Nespeca M, Rismanchi N. , et al. Efficacy of intravenous levetiracetam in neonatal seizures: NEOLEV2–a multicenter, randomized, blinded, controlled phase IIb trial of the optimal dose, efficacy, and safety of levetiracetam compared with phenobarbital in the first-line treatment of neonatal seizures. In: E-PAS2019: 1770.1. Baltimore, MD: 2019 https://app.core-apps.com/pas2019/abstract/286d6c3548dd83e5cc4e8edf1c3b8dc3 . Accessed July 19, 2019
  • 128 Sharpe C, Davis SL, Reiner GE. , et al. Assessing the feasibility of providing a real-time response to seizures detected with continuous long-term neonatal electroencephalography monitoring. J Clin Neurophysiol 2019; 36 (01) 9-13
  • 129 Slaughter LA, Patel AD, Slaughter JL. Pharmacological treatment of neonatal seizures: a systematic review. J Child Neurol 2013; 28 (03) 351-364
  • 130 Shellhaas RA, Chang T, Wusthoff CJ. , et al; Neonatal Seizure Registry Study Group. Treatment duration after acute symptomatic seizures in neonates: a multicenter cohort study. J Pediatr 2017; 181: 298-301.e1
  • 131 Farwell JR, Lee YJ, Hirtz DG, Sulzbacher SI, Ellenberg JH, Nelson KB. Phenobarbital for febrile seizures--effects on intelligence and on seizure recurrence. N Engl J Med 1990; 322 (06) 364-369
  • 132 Camfield CS, Chaplin S, Doyle AB, Shapiro SH, Cummings C, Camfield PR. Side effects of phenobarbital in toddlers; behavioral and cognitive aspects. J Pediatr 1979; 95 (03) 361-365
  • 133 Ikonomidou C, Turski L. Antiepileptic drugs and brain development. Epilepsy Res 2010; 88 (01) 11-22
  • 134 Andreolli A, Turco EC, Pedrazzi G, Beghi E, Pisani F. Incidence of epilepsy after neonatal seizures: a population-based study. Neuroepidemiology 2019; 52 (3,4): 144-151
  • 135 Yıldız EP, Tatlı B, Ekici B. , et al. Evaluation of etiologic and prognostic factors in neonatal convulsions. Pediatr Neurol 2012; 47 (03) 186-192
  • 136 Shah DK, Zempel J, Barton T, Lukas K, Inder TE. Electrographic seizures in preterm infants during the first week of life are associated with cerebral injury. Pediatr Res 2010; 67 (01) 102-106
  • 137 Pisani F, Spagnoli C. Neonatal seizures: a review of outcomes and outcome predictors. Neuropediatrics 2016; 47 (01) 12-19
  • 138 Pisani F, Facini C, Pelosi A, Mazzotta S, Spagnoli C, Pavlidis E. Neonatal seizures in preterm newborns: a predictive model for outcome. Eur J Paediatr Neurol 2016; 20 (02) 243-251
  • 139 Nardou R, Ferrari DC, Ben-Ari Y. Mechanisms and effects of seizures in the immature brain. Semin Fetal Neonatal Med 2013; 18 (04) 175-184
  • 140 Glass HC, Glidden D, Jeremy RJ, Barkovich AJ, Ferriero DM, Miller SP. Clinical neonatal seizures are independently associated with outcome in infants at risk for hypoxic-ischemic brain injury. J Pediatr 2009; 155 (03) 318-323
  • 141 Miller SP, Weiss J, Barnwell A. , et al. Seizure-associated brain injury in term newborns with perinatal asphyxia. Neurology 2002; 58 (04) 542-548
  • 142 Holmes GL. Effects of seizures on brain development: lessons from the laboratory. Pediatr Neurol 2005; 33 (01) 1-11
  • 143 Ben-Ari Y, Holmes GL. Effects of seizures on developmental processes in the immature brain. Lancet Neurol 2006; 5 (12) 1055-1063
  • 144 Brooks-Kayal AR. Rearranging receptors. Epilepsia 2005; 46 (Suppl. 07) 29-38
  • 145 Lee CL, Hannay J, Hrachovy R, Rashid S, Antalffy B, Swann JW. Spatial learning deficits without hippocampal neuronal loss in a model of early-onset epilepsy. Neuroscience 2001; 107 (01) 71-84
  • 146 Wirrell EC, Armstrong EA, Osman LD, Yager JY. Prolonged seizures exacerbate perinatal hypoxic-ischemic brain damage. Pediatr Res 2001; 50 (04) 445-454
  • 147 Young L, Berg M, Soll R. Prophylactic barbiturate use for the prevention of morbidity and mortality following perinatal asphyxia. Cochrane Database Syst Rev 2016; (05) CD001240
  • 148 Pisani F, Sisti L, Seri S. A scoring system for early prognostic assessment after neonatal seizures. Pediatrics 2009; 124 (04) e580-e587
  • 149 Garfinkle J, Shevell MI. Prognostic factors and development of a scoring system for outcome of neonatal seizures in term infants. Eur J Paediatr Neurol 2011; 15 (03) 222-229
  • 150 Anand V, Nair PMC. Neonatal seizures: predictors of adverse outcome. J Pediatr Neurosci 2014; 9 (02) 97-99
  • 151 Lai Y-H, Ho C-S, Chiu N-C, Tseng C-F, Huang Y-L. Prognostic factors of developmental outcome in neonatal seizures in term infants. Pediatr Neonatol 2013; 54 (03) 166-172
  • 152 Ellison PH, Largent JA, Bahr JP. A scoring system to predict outcome following neonatal seizures. J Pediatr 1981; 99 (03) 455-459
  • 153 Galanopoulou AS, Moshé SL. Neonatal and infantile epilepsy: acquired and genetic models. Cold Spring Harb Perspect Med 2015; 6 (01) a022707