Semin Musculoskelet Radiol 2019; 23(05): 569-578
DOI: 10.1055/s-0039-1695720
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Cartilage Imaging in Osteoarthritis

1   Department of Radiology, NYU Langone Health, New York, New York
2   Texas Scottish Rite Hospital for Children, Dallas, Texas
,
William Walter
1   Department of Radiology, NYU Langone Health, New York, New York
,
Iman Khodarahmi
1   Department of Radiology, NYU Langone Health, New York, New York
,
Christopher J. Burke
1   Department of Radiology, NYU Langone Health, New York, New York
› Author Affiliations
Further Information

Publication History

Publication Date:
25 September 2019 (online)

Abstract

Osteoarthritis (OA) is the most common joint disease in the United States. The prevalence of OA is rising due to an aging population and increasing rates of obesity. Magnetic resonance imaging (MRI) allows an incomparable noninvasive assessment of all joint structures. Irreversible and progressive degradation of the articular cartilage remains the hallmark feature of OA. To date, attempts at developing disease-modifying drugs or biomechanical interventions for treating OA have proven unsuccessful. MRI-based cartilage imaging techniques have continued to advance, however, and will likely play a central role in the development of these joint preservation methods of the future. In this narrative review, we describe clinical MR image acquisition and assessment of cartilage. We discuss the semiquantitative cartilage scoring methods used in research. Lastly, we review the quantitative MRI techniques that allow assessment of changes in the biochemical composition of cartilage, even before the morphological changes are evident.

 
  • References

  • 1 Centers for Disease Control and Prevention (CDC). Prevalence of doctor-diagnosed arthritis and arthritis-attributable activity limitation—United States, 2007-2009. MMWR Morb Mortal Wkly Rep 2010; 59 (39) 1261-1265
  • 2 Lawrence RC, Felson DT, Helmick CG. , et al; National Arthritis Data Workgroup. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum 2008; 58 (01) 26-35
  • 3 Altman R, Alarcón G, Appelrouth D. , et al. The American College of Rheumatology criteria for the classification and reporting of osteoarthritis of the hip. Arthritis Rheum 1991; 34 (05) 505-514
  • 4 Boegård TL, Rudling O, Petersson IF, Jonsson K. Joint space width of the tibiofemoral and of the patellofemoral joint in chronic knee pain with or without radiographic osteoarthritis: a 2-year follow-up. Osteoarthritis Cartilage 2003; 11 (05) 370-376
  • 5 Guermazi A, Roemer FW, Felson DT, Brandt KD. Motion for debate: osteoarthritis clinical trials have not identified efficacious therapies because traditional imaging outcome measures are inadequate. Arthritis Rheum 2013; 65 (11) 2748-2758
  • 6 Bijlsma JW, Berenbaum F, Lafeber FP. Osteoarthritis: an update with relevance for clinical practice. Lancet 2011; 377 (9783): 2115-2126
  • 7 Tonge DP, Pearson MJ, Jones SW. The hallmarks of osteoarthritis and the potential to develop personalised disease-modifying pharmacological therapeutics. Osteoarthritis Cartilage 2014; 22 (05) 609-621
  • 8 Lane NE, Brandt K, Hawker G. , et al. OARSI-FDA initiative: defining the disease state of osteoarthritis. Osteoarthritis Cartilage 2011; 19 (05) 478-482
  • 9 Binks DA, Hodgson RJ, Ries ME. , et al. Quantitative parametric MRI of articular cartilage: a review of progress and open challenges. Br J Radiol 2013; 86 (1023): 20120163
  • 10 Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. Sports Health 2009; 1 (06) 461-468
  • 11 Buckwalter JA, Mankin HJ. Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect 1998; 47: 487-504
  • 12 Rubenstein JD, Li JG, Majumdar S, Henkelman RM. Image resolution and signal-to-noise ratio requirements for MR imaging of degenerative cartilage. AJR Am J Roentgenol 1997; 169 (04) 1089-1096
  • 13 Cheng Q, Zhao F-C. Comparison of 1.5- and 3.0-T magnetic resonance imaging for evaluating lesions of the knee: A systematic review and meta-analysis (PRISMA-compliant article). Medicine (Baltimore) 2018; 97 (38) e12401-e12401
  • 14 Springer E, Bohndorf K, Juras V. , et al. Comparison of routine knee magnetic resonance imaging at 3 T and 7 T. Invest Radiol 2017; 52 (01) 42-54
  • 15 Trattnig S, Ba-Ssalamah A, Pinker K, Plank C, Vecsei V, Marlovits S. Matrix-based autologous chondrocyte implantation for cartilage repair: noninvasive monitoring by high-resolution magnetic resonance imaging. Magn Reson Imaging 2005; 23 (07) 779-787
  • 16 Mugler III JP. Optimized three-dimensional fast-spin-echo MRI. J Magn Reson Imaging 2014; 39 (04) 745-767
  • 17 Kijowski R, Davis KW, Woods MA. , et al. Knee joint: comprehensive assessment with 3D isotropic resolution fast spin-echo MR imaging—diagnostic performance compared with that of conventional MR imaging at 3.0 T. Radiology 2009; 252 (02) 486-495
  • 18 Jin J, Weber E, Destruel A. , et al. An open 8-channel parallel transmission coil for static and dynamic 7T MRI of the knee and ankle joints at multiple postures. Magn Reson Med 2018; 79 (03) 1804-1816
  • 19 Mohr A. The value of water-excitation 3D FLASH and fat-saturated PDw TSE MR imaging for detecting and grading articular cartilage lesions of the knee. Skeletal Radiol 2003; 32 (07) 396-402
  • 20 Blankenbaker DG, Ullrick SR, Kijowski R. , et al. MR arthrography of the hip: comparison of IDEAL-SPGR volume sequence to standard MR sequences in the detection and grading of cartilage lesions. Radiology 2011; 261 (03) 863-871
  • 21 Regatte RR, Schweitzer ME. Novel contrast mechanisms at 3 Tesla and 7 Tesla. Semin Musculoskelet Radiol 2008; 12 (03) 266-280
  • 22 Outerbridge RE. The etiology of chondromalacia patellae. J Bone Joint Surg Br 1961; 43-B: 752-757
  • 23 Noyes FR, Stabler CL. A system for grading articular cartilage lesions at arthroscopy. Am J Sports Med 1989; 17 (04) 505-513
  • 24 Brittberg M, Winalski CS. Evaluation of cartilage injuries and repair. J Bone Joint Surg Am 2003; 85-A (Suppl. 02) 58-69
  • 25 Palmieri-Smith RM, Thomas AC, Karvonen-Gutierrez C, Sowers MF. Isometric quadriceps strength in women with mild, moderate, and severe knee osteoarthritis. Am J Phys Med Rehabil 2010; 89 (07) 541-548
  • 26 Hofmann GO, Marticke J, Grossstück R. , et al. Detection and evaluation of initial cartilage pathology in man: a comparison between MRT, arthroscopy and near-infrared spectroscopy (NIR) in their relation to initial knee pain. Pathophysiology 2010; 17 (01) 1-8
  • 27 Potter HG, Linklater JM, Allen AA, Hannafin JA, Haas SB. Magnetic resonance imaging of articular cartilage in the knee. An evaluation with use of fast-spin-echo imaging. J Bone Joint Surg Am 1998; 80 (09) 1276-1284
  • 28 Hunter DJ, Zhang YQ, Niu JB. , et al. The association of meniscal pathologic changes with cartilage loss in symptomatic knee osteoarthritis. Arthritis Rheum 2006; 54 (03) 795-801
  • 29 Stehling C, Lane NE, Nevitt MC, Lynch J, McCulloch CE, Link TM. Subjects with higher physical activity levels have more severe focal knee lesions diagnosed with 3T MRI: analysis of a non-symptomatic cohort of the osteoarthritis initiative. Osteoarthritis Cartilage 2010; 18 (06) 776-786
  • 30 Hovis KK, Alizai H, Tham SC. , et al. Non-traumatic anterior cruciate ligament abnormalities and their relationship to osteoarthritis using morphological grading and cartilage T2 relaxation times: data from the Osteoarthritis Initiative (OAI). Skeletal Radiol 2012; 41 (11) 1435-1443
  • 31 Hovis KK, Stehling C, Souza RB. , et al. Physical activity is associated with magnetic resonance imaging-based knee cartilage T2 measurements in asymptomatic subjects with and those without osteoarthritis risk factors. Arthritis Rheum 2011; 63 (08) 2248-2256
  • 32 Laberge MA, Baum T, Virayavanich W. , et al. Obesity increases the prevalence and severity of focal knee abnormalities diagnosed using 3T MRI in middle-aged subjects—data from the Osteoarthritis Initiative. Skeletal Radiol 2012; 41 (06) 633-641
  • 33 Virayavanich W, Alizai H, Baum T. , et al. Association of frequent knee bending activity with focal knee lesions detected with 3T magnetic resonance imaging: data from the Osteoarthritis Initiative. Arthritis Care Res (Hoboken) 2013; 65 (09) 1441-1448
  • 34 Peterfy CG, Guermazi A, Zaim S. , et al. Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthritis and cartilage/OARS. Osteoarthritis Cartilage 2004; 12 (03) 177-190
  • 35 Hunter DJ, Lo GH, Gale D, Grainger AJ, Guermazi A, Conaghan PG. The reliability of a new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion assessment: BLOKS (Boston Leeds Osteoarthritis Knee Score). Ann Rheum Dis 2008; 67 (02) 206-211
  • 36 Lynch JA, Roemer FW, Nevitt MC. , et al. Comparison of BLOKS and WORMS scoring systems part I. Cross sectional comparison of methods to assess cartilage morphology, meniscal damage and bone marrow lesions on knee MRI: data from the osteoarthritis initiative. Osteoarthritis Cartilage 2010; 18 (11) 1393-1401
  • 37 Felson DT, Lynch J, Guermazi A. , et al. Comparison of BLOKS and WORMS scoring systems part II. Longitudinal assessment of knee MRIs for osteoarthritis and suggested approach based on their performance: data from the Osteoarthritis Initiative. Osteoarthritis Cartilage 2010; 18 (11) 1402-1407
  • 38 Hunter DJ, Guermazi A, Lo GH. , et al. Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score). Osteoarthritis Cartilage 2011; 19 (08) 990-1002
  • 39 Kornaat PR, Ceulemans RY, Kroon HM. , et al. MRI assessment of knee osteoarthritis: Knee Osteoarthritis Scoring System (KOSS)—inter-observer and intra-observer reproducibility of a compartment-based scoring system. Skeletal Radiol 2005; 34 (02) 95-102
  • 40 Rogers LQ, Macera CA, Hootman JM, Ainsworth BE, Blairi SN. The association between joint stress from physical activity and self-reported osteoarthritis: an analysis of the Cooper Clinic data. Osteoarthritis Cartilage 2002; 10 (08) 617-622
  • 41 Racunica TL, Teichtahl AJ, Wang Y. , et al. Effect of physical activity on articular knee joint structures in community-based adults. Arthritis Rheum 2007; 57 (07) 1261-1268
  • 42 Stehling C, Liebl H, Krug R. , et al. Patellar cartilage: T2 values and morphologic abnormalities at 3.0-T MR imaging in relation to physical activity in asymptomatic subjects from the Osteoarthritis Initiative. Radiology 2010; 254 (02) 509-520
  • 43 Stahl R, Luke A, Li X. , et al. T1rho, T2 and focal knee cartilage abnormalities in physically active and sedentary healthy subjects versus early OA patients—a 3.0-Tesla MRI study. Eur Radiol 2009; 19 (01) 132-143
  • 44 Washburn RA, Smith KW, Jette AM, Janney CA. The Physical Activity Scale for the Elderly (PASE): development and evaluation. J Clin Epidemiol 1993; 46 (02) 153-162
  • 45 Doré DA, Winzenberg TM, Ding C. , et al. The association between objectively measured physical activity and knee structural change using MRI. Ann Rheum Dis 2013; 72 (07) 1170-1175
  • 46 Anandacoomarasamy A, Smith G, Leibman S. , et al. Cartilage defects are associated with physical disability in obese adults. Rheumatology (Oxford) 2009; 48 (10) 1290-1293
  • 47 Baum T, Joseph GB, Nardo L. , et al. Correlation of magnetic resonance imaging-based knee cartilage T2 measurements and focal knee lesions with body mass index: thirty-six-month followup data from a longitudinal, observational multicenter study. Arthritis Care Res (Hoboken) 2013; 65 (01) 23-33
  • 48 Roemer FW, Zhang Y, Niu J. , et al; Multicenter Osteoarthritis Study Investigators. Tibiofemoral joint osteoarthritis: risk factors for MR-depicted fast cartilage loss over a 30-month period in the multicenter osteoarthritis study. Radiology 2009; 252 (03) 772-780
  • 49 Gudbergsen H, Boesen M, Lohmander LS. , et al. Weight loss is effective for symptomatic relief in obese subjects with knee osteoarthritis independently of joint damage severity assessed by high-field MRI and radiography. Osteoarthritis Cartilage 2012; 20 (06) 495-502
  • 50 Ding C, Martel-Pelletier J, Pelletier JP. , et al. Meniscal tear as an osteoarthritis risk factor in a largely non-osteoarthritic cohort: a cross-sectional study. J Rheumatol 2007; 34 (04) 776-784
  • 51 Lee DH, Lee BS, Kim JM. , et al. Predictors of degenerative medial meniscus extrusion: radial component and knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc 2011; 19 (02) 222-229
  • 52 Lee YG, Shim JC, Choi YS, Kim JG, Lee GJ, Kim HK. Magnetic resonance imaging findings of surgically proven medial meniscus root tear: tear configuration and associated knee abnormalities. J Comput Assist Tomogr 2008; 32 (03) 452-457
  • 53 Crema MD, Roemer FW, Felson DT. , et al. Factors associated with meniscal extrusion in knees with or at risk for osteoarthritis: the Multicenter Osteoarthritis study. Radiology 2012; 264 (02) 494-503
  • 54 Bloecker K, Guermazi A, Wirth W. , et al; OAI investigators. Tibial coverage, meniscus position, size and damage in knees discordant for joint space narrowing—data from the Osteoarthritis Initiative. Osteoarthritis Cartilage 2013; 21 (03) 419-427
  • 55 Tanamas S, Hanna FS, Cicuttini FM, Wluka AE, Berry P, Urquhart DM. Does knee malalignment increase the risk of development and progression of knee osteoarthritis? A systematic review. Arthritis Rheum 2009; 61 (04) 459-467
  • 56 Felson DT, Niu J, Gross KD. , et al. Valgus malalignment is a risk factor for lateral knee osteoarthritis incidence and progression: findings from the Multicenter Osteoarthritis Study and the Osteoarthritis Initiative. Arthritis Rheum 2013; 65 (02) 355-362
  • 57 Sharma L, Chmiel JS, Almagor O. , et al. The role of varus and valgus alignment in the initial development of knee cartilage damage by MRI: the MOST study. Ann Rheum Dis 2013; 72 (02) 235-240
  • 58 Krug R, Stehling C, Kelley DA, Majumdar S, Link TM. Imaging of the musculoskeletal system in vivo using ultra-high field magnetic resonance at 7 T. Invest Radiol 2009; 44 (09) 613-618
  • 59 Jordan CD, Saranathan M, Bangerter NK, Hargreaves BA, Gold GE. Musculoskeletal MRI at 3.0 T and 7.0 T: a comparison of relaxation times and image contrast. Eur J Radiol 2013; 82 (05) 734-739
  • 60 Pruessmann KP. Parallel imaging at high field strength: synergies and joint potential. Top Magn Reson Imaging 2004; 15 (04) 237-244
  • 61 Regatte RR, Schweitzer ME. Ultra-high-field MRI of the musculoskeletal system at 7.0T. J Magn Reson Imaging 2007; 25 (02) 262-269
  • 62 Peterfy CG, Schneider E, Nevitt M. The Osteoarthritis Initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthritis Cartilage 2008; 16 (12) 1433-1441
  • 63 Liess C, Lüsse S, Karger N, Heller M, Glüer CC. Detection of changes in cartilage water content using MRI T2-mapping in vivo. Osteoarthritis Cartilage 2002; 10 (12) 907-913
  • 64 Carballido-Gamio J, Blumenkrantz G, Lynch JA, Link TM, Majumdar S. Longitudinal analysis of MRI T(2) knee cartilage laminar organization in a subset of patients from the Osteoarthritis Initiative. Magn Reson Med 2010; 63 (02) 465-472
  • 65 Joseph GB, Baum T, Alizai H. , et al. Baseline mean and heterogeneity of MR cartilage T2 are associated with morphologic degeneration of cartilage, meniscus, and bone marrow over 3 years—data from the Osteoarthritis Initiative. Osteoarthritis Cartilage 2012; 20 (07) 727-735
  • 66 Chang G, Xia D, Sherman O. , et al. High resolution morphologic imaging and T2 mapping of cartilage at 7 Tesla: comparison of cartilage repair patients and healthy controls. MAGMA 2013; 26 (06) 539-548
  • 67 Domayer SE, Apprich S, Stelzeneder D. , et al. Cartilage repair of the ankle: first results of T2 mapping at 7.0 T after microfracture and matrix associated autologous cartilage transplantation. Osteoarthritis Cartilage 2012; 20 (08) 829-836
  • 68 Welsch GH, Mamisch TC, Hughes T. , et al. In vivo biochemical 7.0 Tesla magnetic resonance: preliminary results of dGEMRIC, zonal T2, and T2* mapping of articular cartilage. Invest Radiol 2008; 43 (09) 619-626
  • 69 Welsch GH, Mamisch TC, Marlovits S. , et al. Quantitative T2 mapping during follow-up after matrix-associated autologous chondrocyte transplantation (MACT): full-thickness and zonal evaluation to visualize the maturation of cartilage repair tissue. J Orthop Res 2009; 27 (07) 957-963
  • 70 Mamisch TC, Hughes T, Mosher TJ. , et al. T2 star relaxation times for assessment of articular cartilage at 3 T: a feasibility study. Skeletal Radiol 2012; 41 (03) 287-292
  • 71 Welsch GH, Apprich S, Zbyn S. , et al. Biochemical (T2, T2* and magnetisation transfer ratio) MRI of knee cartilage: feasibility at ultra-high field (7T) compared with high field (3T) strength. Eur Radiol 2011; 21 (06) 1136-1143
  • 72 Singh A, Haris M, Cai K, Kogan F, Hariharan H, Reddy R. High resolution T1ρ mapping of in vivo human knee cartilage at 7T. PLoS One 2014; 9 (05) e97486
  • 73 Sepponen RE, Pohjonen JA, Sipponen JT, Tanttu JI. A method for T1 rho imaging. J Comput Assist Tomogr 1985; 9 (06) 1007-1011
  • 74 Keenan KE, Besier TF, Pauly JM. , et al. Prediction of glycosaminoglycan content in human cartilage by age, T1ρ and T2 MRI. Osteoarthritis Cartilage 2011; 19 (02) 171-179
  • 75 Wyatt C, Guha A, Venkatachari A. , et al. Improved differentiation between knees with cartilage lesions and controls using 7T relaxation time mapping. J Orthop Translat 2015; 3 (04) 197-204
  • 76 Prasad AP, Nardo L, Schooler J. , et al. T(1)rho and T(2) relaxation times predict progression of knee osteoarthritis. Osteoarthritis and cartilage/OARS. Osteoarthritis Research Society 2013; 21: 69-76
  • 77 Bae WC, Du J, Bydder GM, Chung CB. Conventional and ultrashort time-to-echo magnetic resonance imaging of articular cartilage, meniscus, and intervertebral disk. Top Magn Reson Imaging 2010; 21 (05) 275-289
  • 78 Bae WC, Dwek JR, Znamirowski R. , et al. Ultrashort echo time MR imaging of osteochondral junction of the knee at 3 T: identification of anatomic structures contributing to signal intensity. Radiology 2010; 254 (03) 837-845
  • 79 Chang EY, Pallante-Kichura AL, Bae WC. , et al. Development of a Comprehensive Osteochondral Allograft MRI Scoring System (OCAMRISS) with histopathologic, micro-computed tomography, and biomechanical validation. Cartilage 2014; 5 (01) 16-27
  • 80 Chu CR, Williams AA, West RV. , et al. Quantitative magnetic resonance imaging UTE-T2* mapping of cartilage and meniscus healing after anatomic anterior cruciate ligament reconstruction. Am J Sports Med 2014; 42 (08) 1847-1856
  • 81 Lazik A, Korsmeier K, Classen T. , et al. 3 Tesla high-resolution and delayed gadolinium enhanced MR imaging of cartilage (dGEMRIC) after autologous chondrocyte transplantation in the hip. J Magn Reson Imaging 2015; 42 (03) 624-633
  • 82 Watanabe A, Wada Y, Obata T. , et al. Delayed gadolinium-enhanced MR to determine glycosaminoglycan concentration in reparative cartilage after autologous chondrocyte implantation: preliminary results. Radiology 2006; 239 (01) 201-208
  • 83 d'Entremont AG, McCormack RG, Agbanlog K. , et al. Cartilage health in high tibial osteotomy using dGEMRIC: relationships with joint kinematics. Knee 2015; 22 (03) 156-162
  • 84 Schleich C, Müller-Lutz A, Sewerin P. , et al. Intra-individual assessment of inflammatory severity and cartilage composition of finger joints in rheumatoid arthritis. Skeletal Radiol 2015; 44 (04) 513-518
  • 85 Owman H, Tiderius CJ, Ericsson YB, Dahlberg LE. Long-term effect of removal of knee joint loading on cartilage quality evaluated by delayed gadolinium-enhanced magnetic resonance imaging of cartilage. Osteoarthritis Cartilage 2014; 22 (07) 928-932
  • 86 Madelin G, Lee JS, Regatte RR, Jerschow A. Sodium MRI: methods and applications. Prog Nucl Magn Reson Spectrosc 2014; 79: 14-47
  • 87 Trattnig S, Welsch GH, Juras V. , et al. 23Na MR imaging at 7 T after knee matrix-associated autologous chondrocyte transplantation preliminary results. Radiology 2010; 257 (01) 175-184
  • 88 Madelin G, Babb J, Xia D. , et al. Articular cartilage: evaluation with fluid-suppressed 7.0-T sodium MR imaging in subjects with and subjects without osteoarthritis. Radiology 2013; 268 (02) 481-491
  • 89 Wiggins GC, Brown R, Lakshmanan K. High-performance radiofrequency coils for (23)Na MRI: brain and musculoskeletal applications. NMR Biomed 2016; 29 (02) 96-106
  • 90 Zbýň Š, Brix MO, Juras V. , et al. Sodium magnetic resonance imaging of ankle joint in cadaver specimens, volunteers, and patients after different cartilage repair techniques at 7 T: initial results. Invest Radiol 2015; 50 (04) 246-254
  • 91 Chang G, Madelin G, Sherman OH. , et al. Improved assessment of cartilage repair tissue using fluid-suppressed 23Na inversion recovery MRI at 7 Tesla: preliminary results. Eur Radiol 2012; 22 (06) 1341-1349
  • 92 Raya JG, Horng A, Dietrich O. , et al. Articular cartilage: in vivo diffusion-tensor imaging. Radiology 2012; 262 (02) 550-559
  • 93 Raya JG, Melkus G, Adam-Neumair S. , et al. Diffusion-tensor imaging of human articular cartilage specimens with early signs of cartilage damage. Radiology 2013; 266 (03) 831-841
  • 94 Singh A, Haris M, Cai K. , et al. Chemical exchange saturation transfer magnetic resonance imaging of human knee cartilage at 3 T and 7 T. Magn Reson Med 2012; 68 (02) 588-594
  • 95 Wang L, Chang G, Xu J. , et al. T1rho MRI of menisci and cartilage in patients with osteoarthritis at 3T. Eur J Radiol 2012; 81 (09) 2329-2336