Semin intervent Radiol 2019; 36(05): 351-366
DOI: 10.1055/s-0039-1697001
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Magnetic Resonance–Guided Prostate Ablation

David A. Woodrum
1   Department of Radiology, Mayo Clinic, Rochester, Minnesota
,
Akira Kawashima
2   Department of Radiology, Mayo Clinic, Scottsdale, Arizona
,
Krzysztof R. Gorny
1   Department of Radiology, Mayo Clinic, Rochester, Minnesota
,
Lance A. Mynderse
3   Department of Urology, Mayo Clinic, Rochester, Minnesota
› Author Affiliations
Further Information

Publication History

Publication Date:
02 December 2019 (online)

Abstract

In 2019, the American Cancer Society (ACS) estimates that 174,650 new cases of prostate cancer will be diagnosed and 31,620 will die due to the prostate cancer in the United States. Prostate cancer is often managed with aggressive curative intent standard therapies including radiotherapy or surgery. Regardless of how expertly done, these standard therapies often bring significant risk and morbidity to the patient's quality of life with potential impact on sexual, urinary, and bowel functions. Additionally, improved screening programs, using prostatic-specific antigen and transrectal ultrasound-guided systematic biopsy, have identified increasing numbers of low-risk, low-grade “localized” prostate cancer. The potential, localized, and indolent nature of many prostate cancers presents a difficult decision of when to intervene, especially within the context of the possible comorbidities of aggressive standard treatments. Active surveillance has been increasingly instituted to balance cancer control versus treatment side effects; however, many patients are not comfortable with this option. Although active debate continues on the suitability of either focal or regional therapy for the low- or intermediate-risk prostate cancer patients, no large consensus has been achieved on the adequate management approach. Some of the largest unresolved issues are prostate cancer multifocality, limitations of current biopsy strategies, suboptimal staging by accepted imaging modalities, less than robust prediction models for indolent prostate cancers, and safety and efficiency of the established curative therapies following focal therapy for prostate cancer. In spite of these restrictions, focal therapy continues to confront the current paradigm of therapy for low- and even intermediate-risk disease. It has been proposed that early detection and proper characterization may play a role in preventing the development of metastatic disease. There is level-1 evidence supporting detection and subsequent aggressive treatment of intermediate- and high-risk prostate cancer. Therefore, accurate assessment of cancer risk (i.e., grade and stage) using imaging and targeted biopsy is critical. Advances in prostate imaging with MRI and PET are changing the workup for these patients, and advances in MR-guided biopsy and therapy are propelling prostate treatment solutions forward faster than ever.

 
  • References

  • 1 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019; 69 (01) 7-34
  • 2 Potosky AL, Davis WW, Hoffman RM. , et al. Five-year outcomes after prostatectomy or radiotherapy for prostate cancer: the prostate cancer outcomes study. [see comment] J Natl Cancer Inst 2004; 96 (18) 1358-1367
  • 3 Jemal A, Siegel R, Ward E. , et al. Cancer statistics, 2006. CA Cancer J Clin 2006; 56 (02) 106-130
  • 4 Onik G. Percutaneous image-guided prostate cancer treatment: cryoablation as a successful example. Tech Vasc Interv Radiol 2007; 10 (02) 149-158
  • 5 Vickers AJ, Ulmert D, Sjoberg DD. , et al. Strategy for detection of prostate cancer based on relation between prostate specific antigen at age 40-55 and long term risk of metastasis: case-control study. BMJ 2013; 346: f2023
  • 6 Bill-Axelson A, Holmberg L, Garmo H. , et al. Radical prostatectomy or watchful waiting in early prostate cancer. N Engl J Med 2014; 370 (10) 932-942
  • 7 Hambrock T, Somford DM, Huisman HJ. , et al. Relationship between apparent diffusion coefficients at 3.0-T MR imaging and Gleason grade in peripheral zone prostate cancer. Radiology 2011; 259 (02) 453-461
  • 8 Muller BG, Fütterer JJ, Gupta RT. , et al. The role of magnetic resonance imaging (MRI) in focal therapy for prostate cancer: recommendations from a consensus panel. BJU Int 2014; 113 (02) 218-227
  • 9 Weinreb JC, Barentsz JO, Choyke PL. , et al. PI-RADS prostate imaging - reporting and data system: 2015, version 2. Eur Urol 2016; 69 (01) 16-40
  • 10 Turkbey B, Rosenkrantz AB, Haider MA. , et al. Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2. Eur Urol 2019; S0302-2838(19)30180-0
  • 11 Siddiqui MM, Rais-Bahrami S, Turkbey B. , et al. Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. JAMA 2015; 313 (04) 390-397
  • 12 Hodge KK, McNeal JE, Terris MK, Stamey TA. Random systematic versus directed ultrasound guided transrectal core biopsies of the prostate. J Urol 1989; 142 (01) 71-74 , discussion 74–75
  • 13 Eichler K, Hempel S, Wilby J, Myers L, Bachmann LM, Kleijnen J. Diagnostic value of systematic biopsy methods in the investigation of prostate cancer: a systematic review. J Urol 2006; 175 (05) 1605-1612
  • 14 Jones JS. Saturation biopsy for detecting and characterizing prostate cancer. BJU Int 2007; 99 (06) 1340-1344
  • 15 Lane BR, Zippe CD, Abouassaly R, Schoenfield L, Magi-Galluzzi C, Jones JS. Saturation technique does not decrease cancer detection during followup after initial prostate biopsy. J Urol 2008; 179 (05) 1746-1750 , discussion 1750
  • 16 Nelson AW, Harvey RC, Parker RA, Kastner C, Doble A, Gnanapragasam VJ. Repeat prostate biopsy strategies after initial negative biopsy: meta-regression comparing cancer detection of transperineal, transrectal saturation and MRI guided biopsy. PLoS One 2013; 8 (02) e57480
  • 17 Ahmed HU, Emberton M, Kepner G, Kepner J. A biomedical engineering approach to mitigate the errors of prostate biopsy. Nat Rev Urol 2012; 9 (04) 227-231
  • 18 Salami SS, Ben-Levi E, Yaskiv O. , et al. In patients with a previous negative prostate biopsy and a suspicious lesion on magnetic resonance imaging, is a 12-core biopsy still necessary in addition to a targeted biopsy?. BJU Int 2015; 115 (04) 562-570
  • 19 Arumainayagam N, Ahmed HU, Moore CM. , et al. Multiparametric MR imaging for detection of clinically significant prostate cancer: a validation cohort study with transperineal template prostate mapping as the reference standard. Radiology 2013; 268 (03) 761-769
  • 20 Ahmed HU, Kirkham A, Arya M. , et al. Is it time to consider a role for MRI before prostate biopsy?. Nat Rev Clin Oncol 2009; 6 (04) 197-206
  • 21 Kasivisvanathan V, Rannikko AS, Borghi M. , et al; PRECISION Study Group Collaborators. MRI-targeted or standard biopsy for prostate-cancer diagnosis. N Engl J Med 2018; 378 (19) 1767-1777
  • 22 Haffner J, Lemaitre L, Puech P. , et al. Role of magnetic resonance imaging before initial biopsy: comparison of magnetic resonance imaging-targeted and systematic biopsy for significant prostate cancer detection. BJU Int 2011; 108 (8, Pt 2): E171-E178
  • 23 Valerio M, McCartan N, Freeman A, Punwani S, Emberton M, Ahmed HU. Visually directed vs. software-based targeted biopsy compared to transperineal template mapping biopsy in the detection of clinically significant prostate cancer. Urol Oncol 2015; 33 (10) 424.e9-424.e16
  • 24 Tyson MD, Arora SS, Scarpato KR, Barocas D. Magnetic resonance-ultrasound fusion prostate biopsy in the diagnosis of prostate cancer. Urol Oncol 2016; 34 (07) 326-332
  • 25 Mozer P, Rouprêt M, Le Cossec C. , et al. First round of targeted biopsies using magnetic resonance imaging/ultrasonography fusion compared with conventional transrectal ultrasonography-guided biopsies for the diagnosis of localised prostate cancer. BJU Int 2015; 115 (01) 50-57
  • 26 Meng X, Rosenkrantz AB, Mendhiratta N. , et al. Relationship between prebiopsy multiparametric magnetic resonance imaging (MRI), biopsy indication, and MRI-ultrasound fusion-targeted prostate biopsy outcomes. Eur Urol 2016; 69 (03) 512-517
  • 27 Sonn GA, Chang E, Natarajan S. , et al. Value of targeted prostate biopsy using magnetic resonance-ultrasound fusion in men with prior negative biopsy and elevated prostate-specific antigen. Eur Urol 2014; 65 (04) 809-815
  • 28 Hoeks CM, Schouten MG, Bomers JG. , et al. Three-tesla magnetic resonance-guided prostate biopsy in men with increased prostate-specific antigen and repeated, negative, random, systematic, transrectal ultrasound biopsies: detection of clinically significant prostate cancers. Eur Urol 2012; 62 (05) 902-909
  • 29 Delongchamps NB, Lefèvre A, Bouazza N, Beuvon F, Legman P, Cornud F. Detection of significant prostate cancer with magnetic resonance targeted biopsies--should transrectal ultrasound-magnetic resonance imaging fusion guided biopsies alone be a standard of care?. J Urol 2015; 193 (04) 1198-1204
  • 30 Filson CP, Natarajan S, Margolis DJ. , et al. Prostate cancer detection with magnetic resonance-ultrasound fusion biopsy: the role of systematic and targeted biopsies. Cancer 2016; 122 (06) 884-892
  • 31 Borofsky S, George AK, Gaur S. , et al. What are we missing? False-negative cancers at multiparametric MR imaging of the prostate. Radiology 2018; 286 (01) 186-195
  • 32 Penzkofer T, Tuncali K, Fedorov A. , et al. Transperineal in-bore 3-T MR imaging-guided prostate biopsy: a prospective clinical observational study. Radiology 2015; 274 (01) 170-180
  • 33 Elhawary H, Zivanovic A, Rea M. , et al. The feasibility of MR-image guided prostate biopsy using piezoceramic motors inside or near to the magnet isocentre. Med Image Comput Comput Assist Interv 2006; 9 (Pt 1): 519-526
  • 34 Lagerburg V, Moerland MA, van Vulpen M, Lagendijk JJW. A new robotic needle insertion method to minimise attendant prostate motion. Radiother Oncol 2006; 80 (01) 73-77
  • 35 Murphy DG, Grummet JP. Planning for the post-antibiotic era - why we must avoid TRUS-guided biopsy sampling. Nat Rev Urol 2016; 13 (10) 559-560
  • 36 Heidenreich A, Bastian PJ, Bellmunt J. , et al; European Association of Urology. EAU guidelines on prostate cancer. part 1: screening, diagnosis, and local treatment with curative intent-update 2013. Eur Urol 2014; 65 (01) 124-137
  • 37 Wallis CJD, Saskin R, Choo R. , et al. Surgery versus radiotherapy for clinically-localized prostate cancer: a systematic review and meta-analysis. Eur Urol 2016; 70 (01) 21-30
  • 38 Lei JH, Liu LR, Wei Q. , et al. Systematic review and meta-analysis of the survival outcomes of first-line treatment options in high-risk prostate cancer. Sci Rep 2015; 5: 7713
  • 39 Petrelli F, Vavassori I, Coinu A, Borgonovo K, Sarti E, Barni S. Radical prostatectomy or radiotherapy in high-risk prostate cancer: a systematic review and metaanalysis. Clin Genitourin Cancer 2014; 12 (04) 215-224
  • 40 Cooperberg MR, Broering JM, Carroll PR. Time trends and local variation in primary treatment of localized prostate cancer. J Clin Oncol 2010; 28 (07) 1117-1123
  • 41 Sanda MG, Cadeddu JA, Kirkby E. , et al. Clinically localized prostate cancer: AUA/ASTRO/SUO guideline. Part II: Recommended approaches and details of specific care options. J Urol 2018; 199 (04) 990-997
  • 42 Hakimi AA, Feder M, Ghavamian R. Minimally invasive approaches to prostate cancer: a review of the current literature. Urol J 2007; 4 (03) 130-137
  • 43 Menon M, Tewari A, Peabody JO. , et al. Vattikuti Institute prostatectomy, a technique of robotic radical prostatectomy for management of localized carcinoma of the prostate: experience of over 1100 cases. Urol Clin North Am 2004; 31 (04) 701-717
  • 44 Passoni NM, Polascik TJ. How to select the right patients for focal therapy of prostate cancer?. Curr Opin Urol 2014; 24 (03) 203-208
  • 45 Ritch CR, Katz AE. Prostate cryotherapy: current status. Curr Opin Urol 2009; 19 (02) 177-181
  • 46 Lee T, Mendhiratta N, Sperling D, Lepor H. Focal laser ablation for localized prostate cancer: principles, clinical trials, and our initial experience. Rev Urol 2014; 16 (02) 55-66
  • 47 Ghai S, Louis AS, Van Vliet M. , et al. Real-time MRI-guided focused ultrasound for focal therapy of locally confined low-risk prostate cancer: feasibility and preliminary outcomes. AJR Am J Roentgenol 2015; 205 (02) W177-W184
  • 48 Blazevski A, Scheltema MJ, Yuen B. , et al. Oncological and quality-of-life outcomes following focal irreversible electroporation as primary treatment for localised prostate cancer: a biopsy-monitored prospective cohort. Eur Urol Oncol 2019; DOI: 10.1016/j.euo.2019.04.008. . [Epub ahead of print]
  • 49 Punnen S, Cooperberg MR, D'Amico AV. , et al. Management of biochemical recurrence after primary treatment of prostate cancer: a systematic review of the literature. Eur Urol 2013; 64 (06) 905-915
  • 50 Edison E, Tariq Shah T, Ahmed HU. Focal ablation of early-stage prostate cancer: candidate selection, treatment guidance, and assessment of outcome. Urol Clin North Am 2017; 44 (04) 575-585
  • 51 Budäus L, Spethmann J, Isbarn H. , et al. Inverse stage migration in patients undergoing radical prostatectomy: results of 8916 European patients treated within the last decade. BJU Int 2011; 108 (08) 1256-1261
  • 52 Muller BG, van den Bos W, Pinto PA, de la Rosette JJ. Imaging modalities in focal therapy: patient selection, treatment guidance, and follow-up. Curr Opin Urol 2014; 24 (03) 218-224
  • 53 Stephenson AJ, Scardino PT, Bianco Jr FJ, Eastham JA. Salvage therapy for locally recurrent prostate cancer after external beam radiotherapy. Curr Treat Options Oncol 2004; 5 (05) 357-365
  • 54 Ahmed HU, Arya M, Freeman A, Emberton M. Do low-grade and low-volume prostate cancers bear the hallmarks of malignancy?. Lancet Oncol 2012; 13 (11) e509-e517
  • 55 Steinkohl F, Luger AK, Pichler R. , et al. Visibility of MRI prostate lesions on B-mode transrectal ultrasound. Med Ultrason 2018; 20 (04) 441-445
  • 56 Hansen NL, Barrett T, Lloyd T. , et al. Optimizing the number of cores for MRI guided targeted and systematic transperineal prostate biopsy. BJU Int 2019; DOI: 10.1111/bju.14865. . [Epub ahead of print]
  • 57 Natarajan S, Raman S, Priester AM. , et al. Focal laser ablation of prostate cancer: phase I clinical trial. J Urol 2016; 196 (01) 68-75
  • 58 Han KR, Cohen JK, Miller RJ. , et al. Treatment of organ confined prostate cancer with third generation cryosurgery: preliminary multicenter experience. J Urol 2003; 170 (4, Pt 1): 1126-1130
  • 59 Oishi M, Gill IS, Tafuri A. , et al. Hemi-gland cryoablation for localized low-, intermediate- and high-risk prostate cancer: oncologic and functional outcomes at 5 years. J Urol 2019; DOI: 10.1097/JU.0000000000000456. . [Epub ahead of print]
  • 60 Tacke J, Adam G, Haage P, Sellhaus B, Grosskortenhaus S, Günther RW. MR-guided percutaneous cryotherapy of the liver: in vivo evaluation with histologic correlation in an animal model. J Magn Reson Imaging 2001; 13 (01) 50-56
  • 61 Tuncali K, Morrison PR, Tatli S, Silverman SG. MRI-guided percutaneous cryoablation of renal tumors: use of external manual displacement of adjacent bowel loops. Eur J Radiol 2006; 59 (02) 198-202
  • 62 Josan S, Bouley DM, van den Bosch M, Daniel BL, Butts Pauly K. MRI-guided cryoablation: in vivo assessment of focal canine prostate cryolesions. J Magn Reson Imaging 2009; 30 (01) 169-176
  • 63 van den Bosch MA, Josan S, Bouley DM. , et al. MR imaging-guided percutaneous cryoablation of the prostate in an animal model: in vivo imaging of cryoablation-induced tissue necrosis with immediate histopathologic correlation. J Vasc Interv Radiol 2009; 20 (02) 252-258
  • 64 Woodrum DA, Kawashima A, Karnes RJ. , et al. Magnetic resonance imaging-guided cryoablation of recurrent prostate cancer after radical prostatectomy: initial single institution experience. Urology 2013; 82 (04) 870-875
  • 65 Gangi A, Tsoumakidou G, Abdelli O. , et al. Percutaneous MR-guided cryoablation of prostate cancer: initial experience. Eur Radiol 2012; 22 (08) 1829-1835
  • 66 McNichols RJ, Gowda A, Kangasniemi M, Bankson JA, Price RE, Hazle JD. MR thermometry-based feedback control of laser interstitial thermal therapy at 980 nm. Lasers Surg Med 2004; 34 (01) 48-55
  • 67 Vitkin IA, Moriarty JA, Peters RD. , et al. Magnetic resonance imaging of temperature changes during interstitial microwave heating: a phantom study. Med Phys 1997; 24 (02) 269-277
  • 68 Hynynen K, Freund WR, Cline HE. , et al. A clinical, noninvasive, MR imaging-monitored ultrasound surgery method. Radiographics 1996; 16 (01) 185-195
  • 69 Ishihara Y, Calderon A, Watanabe H. , et al. A precise and fast temperature mapping using water proton chemical shift. Magn Reson Med 1995; 34 (06) 814-823
  • 70 Sapareto SA, Dewey WC. Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys 1984; 10 (06) 787-800
  • 71 McNichols RJ, Gowda A, Gelnett MD, Stafford RJ. Percutaneous MRI-guided laser thermal therapy in canine prostate. Paper presented at: Photonic Therapeutics and Diagnostics 2005 ; San Jose, CA
  • 72 Stafford RJ, Shetty A, Elliott AM. , et al. Magnetic resonance guided, focal laser induced interstitial thermal therapy in a canine prostate model. J Urol 2010; 184 (04) 1514-1520
  • 73 Woodrum DA, Gorny KR, Mynderse LA. , et al. Feasibility of 3.0T magnetic resonance imaging-guided laser ablation of a cadaveric prostate. Urology 2010; 75 (06) 1514.e1-1514.e6
  • 74 Raz O, Haider MA, Davidson SR. , et al. Real-time magnetic resonance imaging-guided focal laser therapy in patients with low-risk prostate cancer. Eur Urol 2010; 58 (01) 173-177
  • 75 Chao B, Llukani E, Lepor H. Two-year outcomes following focal laser ablation of localized prostate cancer. Eur Urol Oncol 2018; 1 (02) 129-133
  • 76 Walser E, Nance A, Ynalvez L. , et al. Focal laser ablation of prostate cancer: results in 120 patients with low- to intermediate-risk disease. J Vasc Interv Radiol 2019; 30 (03) 401-409.e2
  • 77 Blana A, Rogenhofer S, Ganzer R. , et al. Eight years' experience with high-intensity focused ultrasonography for treatment of localized prostate cancer. Urology 2008; 72 (06) 1329-1333 , discussion 1333–1334
  • 78 Thüroff S, Chaussy C, Vallancien G. , et al. High-intensity focused ultrasound and localized prostate cancer: efficacy results from the European multicentric study. J Endourol 2003; 17 (08) 673-677
  • 79 Gelet A, Chapelon JY, Bouvier R. , et al. Transrectal high-intensity focused ultrasound: minimally invasive therapy of localized prostate cancer. J Endourol 2000; 14 (06) 519-528
  • 80 Gelet A, Chapelon JY, Bouvier R, Rouvière O, Lyonnet D, Dubernard JM. Transrectal high intensity focused ultrasound for the treatment of localized prostate cancer: factors influencing the outcome. Eur Urol 2001; 40 (02) 124-129
  • 81 Uchida T, Tomonaga T, Kim H. , et al. Improved outcomes with advancements in high intensity focused ultrasound devices for the treatment of localized prostate cancer. J Urol 2015; 193 (01) 103-110
  • 82 Crouzet S, Chapelon JY, Rouvière O. , et al. Whole-gland ablation of localized prostate cancer with high-intensity focused ultrasound: oncologic outcomes and morbidity in 1002 patients. Eur Urol 2014; 65 (05) 907-914
  • 83 van Velthoven R, Aoun F, Marcelis Q. , et al. A prospective clinical trial of HIFU hemiablation for clinically localized prostate cancer. Prostate Cancer Prostatic Dis 2016; 19 (01) 79-83
  • 84 Brandeis J, Pashos CL, Henning JM, Litwin MS. A nationwide charge comparison of the principal treatments for early stage prostate carcinoma. Cancer 2000; 89 (08) 1792-1799
  • 85 Moul JW. Prostate specific antigen only progression of prostate cancer. J Urol 2000; 163 (06) 1632-1642
  • 86 Stephenson AJ, Slawin KM. The value of radiotherapy in treating recurrent prostate cancer after radical prostatectomy. Nat Clin Pract Urol 2004; 1 (02) 90-96
  • 87 Sella T, Schwartz LH, Swindle PW. , et al. Suspected local recurrence after radical prostatectomy: endorectal coil MR imaging. Radiology 2004; 231 (02) 379-385
  • 88 Agarwal PK, Sadetsky N, Konety BR, Resnick MI, Carroll PR. ; Cancer of the Prostate Strategic Urological Research Endeavor (CaPSURE). Treatment failure after primary and salvage therapy for prostate cancer: likelihood, patterns of care, and outcomes. Cancer 2008; 112 (02) 307-314
  • 89 Kuban DA, Thames HD, Levy LB. , et al. Long-term multi-institutional analysis of stage T1-T2 prostate cancer treated with radiotherapy in the PSA era. Int J Radiat Oncol Biol Phys 2003; 57 (04) 915-928
  • 90 Battaglia A, De Meerleer G, Tosco L. , et al. Novel insights into the management of oligometastatic prostate cancer: a comprehensive review. Eur Urol Oncol 2019; 2 (02) 174-188
  • 91 Krämer S, Görich J, Gottfried HW. , et al. Sensitivity of computed tomography in detecting local recurrence of prostatic carcinoma following radical prostatectomy. Br J Radiol 1997; 70 (838) 995-999
  • 92 Connolly JA, Shinohara K, Presti Jr JC, Carroll PR. Local recurrence after radical prostatectomy: characteristics in size, location, and relationship to prostate-specific antigen and surgical margins. Urology 1996; 47 (02) 225-231
  • 93 Linder BJ, Kawashima A, Woodrum DA. , et al. Early localization of recurrent prostate cancer after prostatectomy by endorectal coil magnetic resonance imaging. Can J Urol 2014; 21 (03) 7283-7289
  • 94 Leventis AK, Shariat SF, Slawin KM. Local recurrence after radical prostatectomy: correlation of US features with prostatic fossa biopsy findings. Radiology 2001; 219 (02) 432-439
  • 95 Roy C, Foudi F, Charton J. , et al. Comparative sensitivities of functional MRI sequences in detection of local recurrence of prostate carcinoma after radical prostatectomy or external-beam radiotherapy. AJR Am J Roentgenol 2013; 200 (04) W361-8
  • 96 Kitajima K, Hartman RP, Froemming AT, Hagen CE, Takahashi N, Kawashima A. Detection of local recurrence of prostate cancer after radical prostatectomy using endorectal coil MRI at 3 T: addition of DWI and dynamic contrast enhancement to T2-weighted MRI. AJR Am J Roentgenol 2015; 205 (04) 807-816
  • 97 May EJ, Viers LD, Viers BR. , et al. Prostate cancer post-treatment follow-up and recurrence evaluation. Abdom Radiol (NY) 2016; 41 (05) 862-876
  • 98 Kitajima K, Murphy RC, Nathan MA. , et al. Detection of recurrent prostate cancer after radical prostatectomy: comparison of 11C-choline PET/CT with pelvic multiparametric MR imaging with endorectal coil. J Nucl Med 2014; 55 (02) 223-232
  • 99 Reske SN, Blumstein NM, Glatting G. [11C]choline PET/CT imaging in occult local relapse of prostate cancer after radical prostatectomy. Eur J Nucl Med Mol Imaging 2008; 35 (01) 9-17
  • 100 Giovacchini G, Picchio M, Coradeschi E. , et al. Predictive factors of [(11)C]choline PET/CT in patients with biochemical failure after radical prostatectomy. Eur J Nucl Med Mol Imaging 2010; 37 (02) 301-309
  • 101 Parker WP, Davis BJ, Park SS. , et al. Identification of site-specific recurrence following primary radiation therapy for prostate cancer using C-11 choline positron emission tomography/computed tomography: a nomogram for predicting extrapelvic disease. Eur Urol 2017; 71 (03) 340-348
  • 102 Nanni C, Zanoni L, Pultrone C. , et al. (18)F-FACBC (anti1-amino-3-(18)F-fluorocyclobutane-1-carboxylic acid) versus (11)C-choline PET/CT in prostate cancer relapse: results of a prospective trial. Eur J Nucl Med Mol Imaging 2016; 43 (09) 1601-1610
  • 103 Corfield J, Perera M, Bolton D, Lawrentschuk N. 68Ga-prostate specific membrane antigen (PSMA) positron emission tomography (PET) for primary staging of high-risk prostate cancer: a systematic review. World J Urol 2018; 36 (04) 519-527
  • 104 Afshar-Oromieh A, Zechmann CM, Malcher A. , et al. Comparison of PET imaging with a (68)Ga-labelled PSMA ligand and (18)F-choline-based PET/CT for the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging 2014; 41 (01) 11-20
  • 105 Calais J, Fendler WP, Herrmann K, Eiber M, Ceci F. Comparison of 68Ga-PSMA-11 and 18F-fluciclovine PET/CT in a case series of 10 patients with prostate cancer recurrence. J Nucl Med 2018; 59 (05) 789-794
  • 106 Afshar-Oromieh A, Holland-Letz T, Giesel FL. , et al. Diagnostic performance of 68Ga-PSMA-11 (HBED-CC) PET/CT in patients with recurrent prostate cancer: evaluation in 1007 patients. Eur J Nucl Med Mol Imaging 2017; 44 (08) 1258-1268
  • 107 Eiber M, Maurer T, Souvatzoglou M. , et al. Evaluation of hybrid 68Ga-PSMA ligand PET/CT in 248 patients with biochemical recurrence after radical prostatectomy. J Nucl Med 2015; 56 (05) 668-674
  • 108 Mitchell CR, Lowe VJ, Rangel LJ, Hung JC, Kwon ED, Karnes RJ. Operational characteristics of (11)c-choline positron emission tomography/computerized tomography for prostate cancer with biochemical recurrence after initial treatment. J Urol 2013; 189 (04) 1308-1313
  • 109 Wieder H, Beer AJ, Holzapfel K. , et al. 11C-choline PET/CT and whole-body MRI including diffusion-weighted imaging for patients with recurrent prostate cancer. Oncotarget 2017; 8 (39) 66516-66527
  • 110 Uchida T, Shoji S, Nakano M. , et al. High-intensity focused ultrasound as salvage therapy for patients with recurrent prostate cancer after external beam radiation, brachytherapy or proton therapy. BJU Int 2011; 107 (03) 378-382
  • 111 Amling CL, Blute ML, Bergstralh EJ, Seay TM, Slezak J, Zincke H. Long-term hazard of progression after radical prostatectomy for clinically localized prostate cancer: continued risk of biochemical failure after 5 years. J Urol 2000; 164 (01) 101-105
  • 112 Bianco Jr FJ, Scardino PT, Stephenson AJ, Diblasio CJ, Fearn PA, Eastham JA. Long-term oncologic results of salvage radical prostatectomy for locally recurrent prostate cancer after radiotherapy. Int J Radiat Oncol Biol Phys 2005; 62 (02) 448-453
  • 113 Boris RS, Bhandari A, Krane LS, Eun D, Kaul S, Peabody JO. Salvage robotic-assisted radical prostatectomy: initial results and early report of outcomes. BJU Int 2009; 103 (07) 952-956
  • 114 Kimura M, Mouraviev V, Tsivian M, Mayes JM, Satoh T, Polascik TJ. Current salvage methods for recurrent prostate cancer after failure of primary radiotherapy. BJU Int 2010; 105 (02) 191-201
  • 115 Qin X, Ye D. Re: Daher C. Chade, Shahrokh F. Shariat, Angel M. Cronin, et al. Salvage radical prostatectomy for radiation-recurrent prostate cancer: a multi-institutional collaboration. Eur urol 2011;60:205-10. Eur Urol 2011; 60 (04) e34
  • 116 Grado GL, Collins JM, Kriegshauser JS. , et al. Salvage brachytherapy for localized prostate cancer after radiotherapy failure. Urology 1999; 53 (01) 2-10
  • 117 Koutrouvelis P, Hendricks F, Lailas N. , et al. Salvage reimplantation in patient with local recurrent prostate carcinoma after brachytherapy with three dimensional computed tomography-guided permanent pararectal implant. Technol Cancer Res Treat 2003; 2 (04) 339-344
  • 118 Kollmeier MA, McBride S, Taggar A. , et al. Salvage brachytherapy for recurrent prostate cancer after definitive radiation therapy: a comparison of low-dose-rate and high-dose-rate brachytherapy and the importance of prostate-specific antigen doubling time. Brachytherapy 2017; 16 (06) 1091-1098
  • 119 Zacharakis E, Ahmed HU, Ishaq A. , et al. The feasibility and safety of high-intensity focused ultrasound as salvage therapy for recurrent prostate cancer following external beam radiotherapy. BJU Int 2008; 102 (07) 786-792
  • 120 Murat F-J, Poissonnier L, Rabilloud M. , et al. Mid-term results demonstrate salvage high-intensity focused ultrasound (HIFU) as an effective and acceptably morbid salvage treatment option for locally radiorecurrent prostate cancer. Eur Urol 2009; 55 (03) 640-647
  • 121 Gelet A, Chapelon JY, Poissonnier L. , et al. Local recurrence of prostate cancer after external beam radiotherapy: early experience of salvage therapy using high-intensity focused ultrasonography. Urology 2004; 63 (04) 625-629
  • 122 Crouzet S, Blana A, Murat FJ. , et al. Salvage high-intensity focused ultrasound (HIFU) for locally recurrent prostate cancer after failed radiation therapy: multi-institutional analysis of 418 patients. BJU Int 2017; 119 (06) 896-904
  • 123 Chin JL, Pautler SE, Mouraviev V, Touma N, Moore K, Downey DB. Results of salvage cryoablation of the prostate after radiation: identifying predictors of treatment failure and complications. J Urol 2001; 165 (6, Pt 1): 1937-1941 , discussion 1941–1942
  • 124 Siddiqui SA, Mynderse LA, Zincke H. , et al. Treatment of prostate cancer local recurrence after radical retropubic prostatectomy with 17-gauge interstitial transperineal cryoablation: initial experience. Urology 2007; 70 (01) 80-85
  • 125 Pisters LL, Rewcastle JC, Donnelly BJ, Lugnani FM, Katz AE, Jones JS. Salvage prostate cryoablation: initial results from the cryo on-line data registry. J Urol 2008; 180 (02) 559-563 , discussion 563–564
  • 126 Wenske S, Quarrier S, Katz AE. Salvage cryosurgery of the prostate for failure after primary radiotherapy or cryosurgery: long-term clinical, functional, and oncologic outcomes in a large cohort at a tertiary referral centre. Eur Urol 2013; 64 (01) 1-7
  • 127 Bomers JG, Yakar D, Overduin CG. , et al. MR imaging-guided focal cryoablation in patients with recurrent prostate cancer. Radiology 2013; 268 (02) 451-460
  • 128 Woodrum DA, Mynderse LA, Gorny KR, Amrami KK, McNichols RJ, Callstrom MR. 3.0T MR-guided laser ablation of a prostate cancer recurrence in the postsurgical prostate bed. J Vasc Interv Radiol 2011; 22 (07) 929-934
  • 129 Lomas DJ, Woodrum DA, McLaren RH. , et al. Rectal wall saline displacement for improved margin during MRI-guided cryoablation of primary and recurrent prostate cancer. Abdom Radiol (NY) 2019; DOI: 10.1007/s00261-019-02147-4. . [Epub ahead of print]
  • 130 Porter IV CA, Woodrum DA, Callstrom MR. , et al. MRI after technically successful renal cryoablation: early contrast enhancement as a common finding. AJR Am J Roentgenol 2010; 194 (03) 790-793
  • 131 Gage AA, Baust J. Mechanisms of tissue injury in cryosurgery. Cryobiology 1998; 37 (03) 171-186
  • 132 Favazza CP, Gorny KR, King DM. , et al. An investigation of the effects from a urethral warming system on temperature distributions during cryoablation treatment of the prostate: a phantom study. Cryobiology 2014; 69 (01) 128-133
  • 133 Butts K, Sinclair J, Daniel BL, Wansapura J, Pauly JM. Temperature quantitation and mapping of frozen tissue. J Magn Reson Imaging 2001; 13 (01) 99-104
  • 134 Wansapura JP, Daniel BL, Vigen KK, Butts K. In vivo MR thermometry of frozen tissue using R2* and signal intensity. Acad Radiol 2005; 12 (09) 1080-1084
  • 135 Lu A, Daniel BL, Pauly JM, Pauly KB. Improved slice selection for R2* mapping during cryoablation with eddy current compensation. J Magn Reson Imaging 2008; 28 (01) 190-198
  • 136 Rieke V, Butts Pauly K. MR thermometry. J Magn Reson Imaging 2008; 27 (02) 376-390
  • 137 Soher BJ, Wyatt C, Reeder SB, MacFall JR. Noninvasive temperature mapping with MRI using chemical shift water-fat separation. Magn Reson Med 2010; 63 (05) 1238-1246