J Neurol Surg A Cent Eur Neurosurg 2020; 81(03): 233-237
DOI: 10.1055/s-0039-1700560
Original Article
Georg Thieme Verlag KG Stuttgart · New York

Interobserver Agreement of White Matter Tract Involvement in Gliomas with Diffusion Tensor Tractography

1   Department of Diagnostic Radiology, Mansoura Faculty of Medicine, Mansoura, DK, Egypt
,
Lamiaa El-Serougy
1   Department of Diagnostic Radiology, Mansoura Faculty of Medicine, Mansoura, DK, Egypt
,
Amani Ezzat
1   Department of Diagnostic Radiology, Mansoura Faculty of Medicine, Mansoura, DK, Egypt
,
Hany Eldawoody
2   Department of Neurosurgery, Mansoura Faculty of Medicine, Mansoura, DK, Egypt
,
Ahmad El-Morsy
1   Department of Diagnostic Radiology, Mansoura Faculty of Medicine, Mansoura, DK, Egypt
› Author Affiliations
Further Information

Publication History

31 January 2019

03 July 2019

Publication Date:
27 November 2019 (online)

Abstract

Aim To assess with diffusion tensor tractography (DTT) the interobserver agreement of white matter tract involvement in patients with gliomas.

Patient and Methods A prospective study was conducted on 35 patients (21 male, 14 female; age: 2–71 years) with gliomas that underwent DTT. Two independent readers assessed the patterns of involvement of the corticospinal tract, corpus callosum, optic radiation, and fasciculi as normal, edematous, displaced, infiltrated, or disrupted.

Results Overall interobserver agreement of involvement of the white matter tracts was excellent (κ = 0.93; 95% confidence interval [CI], 0.91–0.95; p = 0.001). Interobserver agreement was excellent for involvement of corticospinal tracts (κ = 0.81; 95% CI, 0.57–1.00; p = 0.001), corpus callosum (κ = 0.91; 95% CI, 0.75–1.00; p = 0.001), optic radiation (κ = 0.77; 95% CI, 0.53–0.98; p = 0.001), and fasciculi (κ = 0.912; 95% CI, 0.81–0.99; p = 0.001. The interobserver agreement was excellent for tract edema (κ = 0.81; 95% CI, 0.57–1.00; p = 0.001), tract displacement (κ = 0.91; 95% CI, 0.75–1.00; p = 0.001), tract disruption (κ = 0.81; 95% CI, 0.57–1.00; p = 0.001), and good for tract infiltration (κ = 0.77; 95% CI, 0.53–0.98; p = 0.001). The interobserver agreement was excellent for white matter tract involvement in patients with low-grade gliomas (κ = 0.81; 95% CI, 0.57–1.00; p = 0.001) and high-grade gliomas (κ = 0.91; 95% CI, 0.75–1.00; p = 0.001).

Conclusion DTT is a reliable and reproducible method for assessment of white matter tract involvement in patients with low- and high-grade gliomas.

 
  • References

  • 1 Barnholtz-Sloan JS, Ostrom QT, Cote D. Epidemiology of brain tumors. Neurol Clin 2018; 36 (03) 395-419
  • 2 Wick W, Platten M. Understanding and treating glioblastoma. Neurol Clin 2018; 36 (03) 485-499
  • 3 Nam JY, de Groot JF. Treatment of glioblastoma. J Oncol Pract 2017; 13 (10) 629-638
  • 4 van den Bent MJ, Chang SM. Grade II and III oligodendroglioma and astrocytoma. Neurol Clin 2018; 36 (03) 467-484
  • 5 Panesar SS, Abhinav K, Yeh FC, Jacquesson T, Collins M, Fernandez-Miranda J. Tractography for surgical neuro-oncology planning: towards a gold standard. neurotherapeutics 2019; 16 (01) 36-51
  • 6 Razek AAKA, Shabana AAE, El Saied TO, Alrefey N. Diffusion tensor imaging of mild-moderate carpal tunnel syndrome: correlation with nerve conduction study and clinical tests. Clin Rheumatol 2017; 36 (10) 2319-2324
  • 7 Potgieser AR, Wagemakers M, van Hulzen AL, de Jong BM, Hoving EW, Groen RJ. The role of diffusion tensor imaging in brain tumor surgery: a review of the literature. Clin Neurol Neurosurg 2014; 124: 51-58
  • 8 Dubey A, Kataria R, Sinha VD. Role of diffusion tensor imaging in brain tumor surgery. Asian J Neurosurg 2018; 13 (02) 302-306
  • 9 Sagar S, Rick J, Chandra A, Yagnik G, Aghi MK. Functional brain mapping: overview of techniques and their application to neurosurgery. Neurosurg Rev 2019; 42 (03) 639-647
  • 10 Soni N, Mehrotra A, Behari S, Kumar S, Gupta N. Diffusion-tensor imaging and tractography application in pre-operative planning of intra-axial brain lesions. Cureus 2017; 9 (10) e1739
  • 11 Nimsky C, Bauer M, Carl B. Merits and limits of tractography techniques for the uninitiated. Adv Tech Stand Neurosurg 2016; 43 (43) 37-60
  • 12 Ulmer JL, Klein AP, Mueller WM, DeYoe EA, Mark LP. Preoperative diffusion tensor imaging: improving neurosurgical outcomes in brain tumor patients. Neuroimaging Clin N Am 2014; 24 (04) 599-617
  • 13 Choudhri AF, Chin EM, Blitz AM, Gandhi D. Diffusion tensor imaging of cerebral white matter: technique, anatomy, and pathologic patterns. Radiol Clin North Am 2014; 52 (02) 413-425
  • 14 Dimou S, Battisti RA, Hermens DF, Lagopoulos J. A systematic review of functional magnetic resonance imaging and diffusion tensor imaging modalities used in presurgical planning of brain tumour resection. Neurosurg Rev 2013; 36 (02) 205-214 ; discussion 214
  • 15 Pujol S, Wells W, Pierpaoli C. , et al. The DTI challenge: toward standardized evaluation of diffusion tensor imaging tractography for neurosurgery. J Neuroimaging 2015; 25 (06) 875-882
  • 16 El-Serougy L, Abdel Razek AA, Ezzat A, Eldawoody H, El-Morsy A. Assessment of diffusion tensor imaging metrics in differentiating low-grade from high-grade gliomas. Neuroradiol J 2016; 29 (05) 400-407
  • 17 Razek AAKA, El-Serougy L, Abdelsalam M, Gaballa G, Talaat M. Differentiation of residual/recurrent gliomas from postradiation necrosis with arterial spin labeling and diffusion tensor magnetic resonance imaging-derived metrics. Neuroradiology 2018; 60 (02) 169-177
  • 18 Min ZG, Niu C, Zhang QL, Zhang M, Qian YC. Optimal factors of diffusion tensor imaging predicting corticospinal tract injury in patients with brain tumors. Korean J Radiol 2017; 18 (05) 844-851
  • 19 Rosenstock T, Giampiccolo D, Schneider H. , et al. Specific DTI seeding and diffusivity-analysis improve the quality and prognostic value of TMS-based deterministic DTI of the pyramidal tract. Neuroimage Clin 2017; 16: 276-285
  • 20 Hussain A, Utz MJ, Tian W, Liu X, Ekholm S. Imaging and diseases of the ascending and descending pathways. Semin Ultrasound CT MR 2014; 35 (05) 474-486
  • 21 Filippi CG, Cauley KA. Lesions of the corpus callosum and other commissural fibers: diffusion tensor studies. Semin Ultrasound CT MR 2014; 35 (05) 445-458
  • 22 Kallenberg K, Goldmann T, Menke J. , et al. Glioma infiltration of the corpus callosum: early signs detected by DTI. J Neurooncol 2013; 112 (02) 217-222
  • 23 Swienton DJ, Thomas AG. The visual pathway—functional anatomy and pathology. Semin Ultrasound CT MR 2014; 35 (05) 487-503
  • 24 Razek AAKA, Batouty N, Fathy W, Bassiouny R. Diffusion tensor imaging of the optic disc in idiopathic intracranial hypertension. Neuroradiology 2018; 60 (11) 1159-1166
  • 25 Hana A, Husch A, Gunness VR. , et al. DTI of the visual pathway—white matter tracts and cerebral lesions. J Vis Exp 2014 90
  • 26 Hana A, Dooms G, Boecher-Schwarz H, Hertel F. Diffusion tensor imaging—arcuate fasciculus and the importance for the neurosurgeon. Clin Neurol Neurosurg 2015; 132: 61-67
  • 27 Leng B, Han S, Bao Y. , et al. The uncinate fasciculus as observed using diffusion spectrum imaging in the human brain. Neuroradiology 2016; 58 (06) 595-606
  • 28 Panesar SS, Yeh FC, Deibert CP. , et al. A diffusion spectrum imaging-based tractographic study into the anatomical subdivision and cortical connectivity of the ventral external capsule: uncinate and inferior fronto-occipital fascicles. Neuroradiology 2017; 59 (10) 971-987
  • 29 Incekara F, Satoer D, Visch-Brink E, Vincent A, Smits M. Changes in language white matter tract microarchitecture associated with cognitive deficits in patients with presumed low-grade glioma. J Neurosurg 2018; 1-9 . doi: 10.3171/2017.12.JNS171681 (Epub ahead of print)
  • 30 Artzi M, Liberman G, Blumenthal DT, Aizenstein O, Bokstein F, Ben Bashat D. Differentiation between vasogenic edema and infiltrative tumor in patients with high-grade gliomas using texture patch-based analysis. J Magn Reson Imaging 2018 ; June 8 (Epub ahead of print)
  • 31 Abdel Razek AAK. Routine and advanced diffusion imaging modules of the salivary glands. Neuroimaging Clin N Am 2018; 28 (02) 245-254
  • 32 Bonney PA, Conner AK, Boettcher LB. , et al. A simplified method of accurate postprocessing of diffusion tensor imaging for use in brain tumor resection. Oper Neurosurg (Hagerstown) 2017; 13 (01) 47-59
  • 33 Abdel Razek AAK, El-Serougy L, Abdelsalam M, Gaballa G, Talaat M. Differentiation of primary central nervous system lymphoma from glioblastoma: quantitative analysis using arterial-spin labeling and diffusion tensor imaging. World Neurosurg 2019; 123: e303-e309
  • 34 Abdel Razek AAK, Talaat M, El-Serougy L, Abdelsalam M, Gaballa G. Differentiating glioblastomas from solitary brain metastases using arterial spin labeling perfusion- and diffusion tensor imaging-derived metrics. World Neurosurg 2019; 127: e593-e598