Semin Thromb Hemost 2020; 46(04): 435-445
DOI: 10.1055/s-0039-3400258
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

High-Risk Pregnancies and Their Impact on Neonatal Primary Hemostasis

Marianna Politou*
1   Hematology Laboratory-Blood Bank, Aretaieio Hospital, National and Kapodistrian University of Athens, Athens, Greece
,
Vasiliki Mougiou*
2   Neonatal Department, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
,
Maria Kollia
2   Neonatal Department, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
,
Rozeta Sokou
2   Neonatal Department, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
,
Georgios Kafalidis
2   Neonatal Department, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
,
Zoi Iliodromiti
2   Neonatal Department, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
,
Serena Valsami
1   Hematology Laboratory-Blood Bank, Aretaieio Hospital, National and Kapodistrian University of Athens, Athens, Greece
,
Theodora Boutsikou
2   Neonatal Department, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
,
Nicoletta Iacovidou
2   Neonatal Department, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
13. Dezember 2019 (online)

Abstract

Primary hemostasis, similar to other systems in the adjusting and transitioning neonate, undergoes developmental adaptations in the first days of life. Although platelets of neonates do not differ quantitatively compared with those of adults, they functionally present with major differences, thus supporting the theory of a “hypofunctional” phenotype that is counterbalanced by high hematocrit and more potent von Willebrand factor multimers. No clinical effect of bleeding tendency has hence been established so far for healthy term neonates. However, discrepancies in functionality have been noted, associated with gestational age, with more pronounced platelet hyporesponsiveness in preterm neonates. Multiple methods of in vitro platelet function evaluation such as PFA-100/200, platelet aggregometry, flow cytometry, and cone and platelet analyzer have been used for assessment of neonatal primary hemostasis. Several pregnancies are characterized as “high-risk” when risk factors preexist in maternal history or evolve during pregnancy. These pregnancies require specialized observation as they may have unpredictable outcome. High-risk pregnancies include clinical entities such as preeclampsia, pregnancy-induced smoking during pregnancy, gestational diabetes mellitus (GDM), autoimmune diseases, and other maternal hematological conditions. In some cases, like systemic lupus erythematosus, antiphospholipid antibody syndrome, and maternal immunologically based thrombocytopenia, neonatal thrombocytopenia is regarded as a prominent hemostasis defect, while in others, like pregnancy-induced hypertension and preeclampsia, both quantitative and qualitative disorders of neonatal platelets have been reported. In other pathologies, like GDM, neonatal primary hemostasis remains vastly unexplored, which raises the need for further investigation. The extent to which primary hemostasis is affected in neonates of high-risk pregnancies is the main objective of this narrative review.

 
  • References

  • 1 Holinstat M. Normal platelet function. Cancer Metastasis Rev 2017; 36 (02) 195-198
  • 2 Jin J, Daniel JL, Kunapuli SP. Molecular basis for ADP-induced platelet activation. II. The P2Y1 receptor mediates ADP-induced intracellular calcium mobilization and shape change in platelets. J Biol Chem 1998; 273 (04) 2030-2034
  • 3 Ruggeri ZM. The role of von Willebrand factor in thrombus formation. Thromb Res 2007; 120 (Suppl. 01) S5-S9
  • 4 Ruggeri ZM, Mendolicchio GL. Adhesion mechanisms in platelet function. Circ Res 2007; 100 (12) 1673-1685
  • 5 Pryzdial ELG, Lee FMH, Lin BH, Carter RLR, Tegegn TZ, Belletrutti MJ. Blood coagulation dissected. Transfus Apheresis Sci 2018; 57 (04) 449-457
  • 6 Wei AH, Schoenwaelder SM, Andrews RK, Jackson SP. New insights into the haemostatic function of platelets. Br J Haematol 2009; 147 (04) 415-430
  • 7 Herter JM, Rossaint J, Zarbock A. Platelets in inflammation and immunity. J Thromb Haemost 2014; 12 (11) 1764-1775
  • 8 Stalker TJ, Traxler EA, Wu J. , et al. Hierarchical organization in the hemostatic response and its relationship to the platelet-signaling network. Blood 2013; 121 (10) 1875-1885
  • 9 Kühne T, Imbach P. Neonatal platelet physiology and pathophysiology. Eur J Pediatr 1998; 157 (02) 87-94
  • 10 Israels SJ. Diagnostic evaluation of platelet function disorders in neonates and children: an update. Semin Thromb Hemost 2009; 35 (02) 181-188
  • 11 Holness N. High-risk pregnancy. Nurs Clin North Am 2018; 53 (02) 241-251
  • 12 World Health Organization. UNICEF, United Nations Population Fund, Managing Complications in Pregnancy and Childbirth. 2nd ed. Available at: https://www.who.int/maternal_child_adolescent/documents/managing-complications-pregnancy-childbirth/en/ . Accessed September 29, 2019
  • 13 Kühne T, Ryan G, Blanchette V. , et al. Platelet-surface glycoproteins in healthy and preeclamptic mothers and their newborn infants. Pediatr Res 1996; 40 (06) 876-880
  • 14 Sola-Visner M. Platelets in the neonatal period: developmental differences in platelet production, function, and hemostasis and the potential impact of therapies. Hematology (Am Soc Hematol Educ Program) 2012; 2012: 506-511
  • 15 Ault KA, Rinder HM, Mitchell J, Carmody MB, Vary CP, Hillman RS. The significance of platelets with increased RNA content (reticulated platelets). A measure of the rate of thrombopoiesis. Am J Clin Pathol 1992; 98 (06) 637-646
  • 16 Murray NA, Roberts IA. Circulating megakaryocytes and their progenitors in early thrombocytopenia in preterm neonates. Pediatr Res 1996; 40 (01) 112-119
  • 17 Mattia G, Vulcano F, Milazzo L. , et al. Different ploidy levels of megakaryocytes generated from peripheral or cord blood CD34+ cells are correlated with different levels of platelet release. Blood 2002; 99 (03) 888-897
  • 18 Hegyi E, Nakazawa M, Debili N. , et al. Developmental changes in human megakaryocyte ploidy. Exp Hematol 1991; 19 (02) 87-94
  • 19 Park Y, Schoene N, Harris W. Mean platelet volume as an indicator of platelet activation: methodological issues. Platelets 2002; 13 (5-6): 301-306
  • 20 Cremer M, Sola-Visner M, Roll S. , et al. Platelet transfusions in neonates: practices in the United States vary significantly from those in Austria, Germany, and Switzerland. Transfusion 2011; 51 (12) 2634-2641
  • 21 Liu ZJ, Italiano Jr J, Ferrer-Marin F. , et al. Developmental differences in megakaryocytopoiesis are associated with up-regulated TPO signaling through mTOR and elevated GATA-1 levels in neonatal megakaryocytes. Blood 2011; 117 (15) 4106-4117
  • 22 Daly ME. Determinants of platelet count in humans. Haematologica 2011; 96 (01) 10-13
  • 23 Liu ZJ, Hoffmeister KM, Hu Z. , et al. Expansion of the neonatal platelet mass is achieved via an extension of platelet lifespan. Blood 2014; 123 (22) 3381-3389
  • 24 Kulshrestha M, Sola-Visner M, Widness JA, Veng-Pedersen P, Mager DE. Mathematical model of platelet turnover in thrombocytopenic and nonthrombocytopenic preterm neonates. Am J Physiol Heart Circ Physiol 2015; 308 (01) H68-H73
  • 25 MacQueen BC, Christensen RD, Henry E. , et al. The immature platelet fraction: creating neonatal reference intervals and using these to categorize neonatal thrombocytopenias. J Perinatol 2017; 37 (07) 834-838
  • 26 Cremer ML. The immature platelet fraction (IPF) in neonates. Diagnostic Perspect 2011; 1: 36-42
  • 27 Patrick CH, Lazarchick J, Stubbs T, Pittard WB. Mean platelet volume and platelet distribution width in the neonate. Am J Pediatr Hematol Oncol 1987; 9 (02) 130-132
  • 28 Wiedmeier SE, Henry E, Sola-Visner MC, Christensen RD. Platelet reference ranges for neonates, defined using data from over 47,000 patients in a multihospital healthcare system. J Perinatol 2009; 29 (02) 130-136
  • 29 Deschmann E, Sola-Visner M, Saxonhouse MA. Primary hemostasis in neonates with thrombocytopenia. J Pediatr 2014; 164 (01) 167-172
  • 30 Goel R, Josephson CD. Recent advances in transfusions in neonates/infants. F1000Research; 2018 , 7 (F1000 Faculty Rev):609
  • 31 Gelman B, Setty BN, Chen D, Amin-Hanjani S, Stuart MJ. Impaired mobilization of intracellular calcium in neonatal platelets. Pediatr Res 1996; 39 (4 Pt 1): 692-696
  • 32 Del Vecchio A, Motta M, Romagnoli C. Neonatal platelet function. Clin Perinatol 2015; 42 (03) 625-638
  • 33 Mankin P, Maragos J, Akhand M, Saving KL. Imparied platelet--dense granule release in neonates. J Pediatr Hematol Oncol 2000; 22 (02) 143-147
  • 34 Corby DG, O'Barr TP. Decreased alpha-adrenergic receptors in newborn platelets: cause of abnormal response to epinephrine. Dev Pharmacol Ther 1981; 2 (04) 215-225
  • 35 Rajasekhar D, Kestin AS, Bednarek FJ, Ellis PA, Barnard MR, Michelson AD. Neonatal platelets are less reactive than adult platelets to physiological agonists in whole blood. Thromb Haemost 1994; 72 (06) 957-963
  • 36 Haidl H, Pohl S, Leschnik B, Gallistl S, Muntean W, Schlagenhauf A. Neonatal thrombocytopenia: Thrombin generation in presence of reduced platelet counts and effects of rFVIIa in cord blood. Sci Rep 2019; 9 (01) 8014
  • 37 Ravn HB, Andreasen JB, Hvas AM. Does whole blood coagulation analysis reflect developmental haemostasis?. Blood Coagul Fibrinolysis 2017; 28 (03) 218-223
  • 38 Uçar T, Gurman C, Arsan S, Kemahli S. Platelet aggregation in term and preterm newborns. Pediatr Hematol Oncol 2005; 22 (02) 139-145
  • 39 Saxonhouse MA, Sola MC. Platelet function in term and preterm neonates. Clin Perinatol 2004; 31 (01) 15-28
  • 40 Boudewijns M, Raes M, Peeters V. , et al. Evaluation of platelet function on cord blood in 80 healthy term neonates using the Platelet Function Analyser (PFA-100); shorter in vitro bleeding times in neonates than adults. Eur J Pediatr 2003; 162 (03) 212-213
  • 41 Katz JA, Moake JL, McPherson PD. , et al. Relationship between human development and disappearance of unusually large von Willebrand factor multimers from plasma. Blood 1989; 73 (07) 1851-1858
  • 42 Ward RM, Beachy JC. Neonatal complications following preterm birth. BJOG 2003; 110 (Suppl. 20) 8-16
  • 43 Bednarek FJ, Bean S, Barnard MR, Frelinger AL, Michelson AD. The platelet hyporeactivity of extremely low birth weight neonates is age-dependent. Thromb Res 2009; 124 (01) 42-45
  • 44 Favaloro EJ. Clinical utility of closure times using the platelet function analyzer-100/200. Am J Hematol 2017; 92 (04) 398-404
  • 45 Del Vecchio A. Use of the bleeding time in the neonatal intensive care unit. Acta Paediatr Suppl 2002; 91 (438) 82-86
  • 46 Del Vecchio A, Latini G, Henry E, Christensen RD. Template bleeding times of 240 neonates born at 24 to 41 weeks gestation. J Perinatol 2008; 28 (06) 427-431
  • 47 Del Vecchio A, Sola MC. Performing and interpreting the bleeding time in the neonatal intensive care unit. Clin Perinatol 2000; 27 (03) 643-654
  • 48 Sola MC, del Vecchio A, Edwards TJ, Suttner D, Hutson AD, Christensen RD. The relationship between hematocrit and bleeding time in very low birth weight infants during the first week of life. J Perinatol 2001; 21 (06) 368-371
  • 49 Rodgers RP, Levin J. A critical reappraisal of the bleeding time. Semin Thromb Hemost 1990; 16 (01) 1-20
  • 50 Gader AM, Bahakim H, Jabbar FA, Lambourne AL, Gaafar TH, Edrees YB. Dose-response aggregometry in maternal/neonatal platelets. Thromb Haemost 1988; 60 (02) 314-318
  • 51 Ramström S, Södergren AL, Tynngård N, Lindahl TL. Platelet function determined by flow cytometry: new perspectives?. Semin Thromb Hemost 2016; 42 (03) 268-281
  • 52 Gatti L, Guarneri D, Caccamo ML, Gianotti GA, Marini A. Platelet activation in newborns detected by flow-cytometry. Biol Neonate 1996; 70 (06) 322-327
  • 53 Varon D, Dardik R, Shenkman B. , et al. A new method for quantitative analysis of whole blood platelet interaction with extracellular matrix under flow conditions. Thromb Res 1997; 85 (04) 283-294
  • 54 Levy-Shraga Y, Maayan-Metzger A, Lubetsky A. , et al. Platelet function of newborns as tested by cone and plate(let) analyzer correlates with gestational age. Acta Haematol 2006; 115 (3-4): 152-156
  • 55 Hayward CP, Harrison P, Cattaneo M, Ortel TL, Rao AK. ; Platelet Physiology Subcommittee of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Platelet function analyzer (PFA)-100 closure time in the evaluation of platelet disorders and platelet function. J Thromb Haemost 2006; 4 (02) 312-319
  • 56 Roschitz B, Sudi K, Köstenberger M, Muntean W. Shorter PFA-100 closure times in neonates than in adults: role of red cells, white cells, platelets and von Willebrand factor. Acta Paediatr 2001; 90 (06) 664-670
  • 57 Favaloro EJ. Clinical utility of the PFA-100. Semin Thromb Hemost 2008; 34 (08) 709-733
  • 58 Saxonhouse MA, Garner R, Mammel L. , et al. Closure times measured by the platelet function analyzer PFA-100 are longer in neonatal blood compared to cord blood samples. Neonatology 2010; 97 (03) 242-249
  • 59 Nadar S, Lip GY. Platelet activation in the hypertensive disorders of pregnancy. Expert Opin Investig Drugs 2004; 13 (05) 523-529
  • 60 Kleckner HB, Giles HR, Corrigan Jr JJ. The association of maternal and neonatal thrombocytopenia in high-risk pregnancies. Am J Obstet Gynecol 1977; 128 (03) 235-238
  • 61 Janes SL, Goodall AH. Flow cytometric detection of circulating activated platelets and platelet hyper-responsiveness in pre-eclampsia and pregnancy. Clin Sci (Lond) 1994; 86 (06) 731-739
  • 62 Davies JR, Fernando R, Hallworth SP. Hemostatic function in healthy pregnant and preeclamptic women: an assessment using the platelet function analyzer (PFA-100) and thromboelastograph. Anesth Analg 2007; 104 (02) 416-420
  • 63 Kazmi RS, Cooper AJ, Lwaleed BA. Platelet function in pre-eclampsia. Semin Thromb Hemost 2011; 37 (02) 131-136
  • 64 O'Brien WF, Saba HI, Knuppel RA, Scerbo JC, Cohen GR. Alterations in platelet concentration and aggregation in normal pregnancy and preeclampsia. Am J Obstet Gynecol 1986; 155 (03) 486-490
  • 65 Müllers SM, Burke N, Flood K. , et al. Altered platelet function in intrauterine growth restriction: a cause or a consequence of uteroplacental disease?. Am J Perinatol 2016; 33 (08) 791-799
  • 66 Konijnenberg A, van der Post JA, Mol BW. , et al. Can flow cytometric detection of platelet activation early in pregnancy predict the occurrence of preeclampsia? A prospective study. Am J Obstet Gynecol 1997; 177 (02) 434-442
  • 67 Vincelot A, Nathan N, Collet D, Mehaddi Y, Grandchamp P, Julia A. Platelet function during pregnancy: an evaluation using the PFA-100 analyser. Br J Anaesth 2001; 87 (06) 890-893
  • 68 Marietta M, Castelli I, Piccinini F. , et al. The PFA-100 system for the assessment of platelet function in normotensive and hypertensive pregnancies. Clin Lab Haematol 2001; 23 (02) 131-134
  • 69 Can MM, Kaymaz C, Can E. , et al. Whole blood platelet aggregation failed to detect differences between preeclampsia and normal pregnancy. Platelets 2010; 21 (06) 496-497
  • 70 Strauss T, Maayan-Metzger A, Simchen MJ. , et al. Impaired platelet function in neonates born to mothers with diabetes or hypertension during pregnancy. Klin Padiatr 2010; 222 (03) 154-157
  • 71 Brazy JE, Grimm JK, Little VA. Neonatal manifestations of severe maternal hypertension occurring before the thirty-sixth week of pregnancy. J Pediatr 1982; 100 (02) 265-271
  • 72 Sibai BM, Taslimi MM, el-Nazer A, Amon E, Mabie BC, Ryan GM. Maternal-perinatal outcome associated with the syndrome of hemolysis, elevated liver enzymes, and low platelets in severe preeclampsia-eclampsia. Am J Obstet Gynecol 1986; 155 (03) 501-509
  • 73 Baschat AA, Gembruch U, Reiss I, Gortner L, Weiner CP, Harman CR. Absent umbilical artery end-diastolic velocity in growth-restricted fetuses: a risk factor for neonatal thrombocytopenia. Obstet Gynecol 2000; 96 (02) 162-166
  • 74 Tsao PN, Teng RJ, Chou HC, Tsou KI. The thrombopoietin level in the cord blood in premature infants born to mothers with pregnancy-induced hypertension. Biol Neonate 2002; 82 (04) 217-221
  • 75 Bhat YR, Cherian CS. Neonatal thrombocytopenia associated with maternal pregnancy induced hypertension. Indian J Pediatr 2008; 75 (06) 571-573
  • 76 Backes CH, Markham K, Moorehead P, Cordero L, Nankervis CA, Giannone PJ. Maternal preeclampsia and neonatal outcomes. J Pregnancy 2011; 2011: 214365
  • 77 Sunil Kumar P, Haricharan KR. Neonatal thrombocytopenia associated with gestational hypertension, preeclampsia and eclampsia: a case-control study. Int J Contemp Pediatr. 2016; 3 (01) 16-21
  • 78 Kalagiri RR, Choudhury S, Carder T, Govande V, Beeram MR, Uddin MN. Neonatal thrombocytopenia as a consequence of maternal preeclampsia. AJP Rep 2016; 6 (01) e42-e47
  • 79 Litt JS, Hecht JL. Placental pathology and neonatal thrombocytopenia: lesion type is associated with increased risk. J Perinatol 2014; 34 (12) 914-916
  • 80 Zook KJ, Mackley AB, Kern J, Paul DA. Hematologic effects of placental pathology on very low birth weight infants born to mothers with preeclampsia. J Perinatol 2009; 29 (01) 8-12
  • 81 Christensen RD, Baer VL, Henry E, Snow GL, Butler A, Sola-Visner MC. Thrombocytopenia in small-for-gestational-age infants. Pediatrics 2015; 136 (02) e361-e370
  • 82 Kim HY, Sohn YS, Lim JH. , et al. Neonatal outcome after preterm delivery in HELLP syndrome. Yonsei Med J 2006; 47 (03) 393-398
  • 83 ACOG Committee Opinion No. 743. Low-Dose Aspirin Use during Pregnancy. Obstet Gynecol 2018; 132 (01) e44-e52
  • 84 Benigni A, Gregorini G, Frusca T. , et al. Effect of low-dose aspirin on fetal and maternal generation of thromboxane by platelets in women at risk for pregnancy-induced hypertension. N Engl J Med 1989; 321 (06) 357-362
  • 85 Leonhardt A, Bernert S, Watzer B, Schmitz-Ziegler G, Seyberth HW. Low-dose aspirin in pregnancy: maternal and neonatal aspirin concentrations and neonatal prostanoid formation. Pediatrics 2003; 111 (01) e77-e81
  • 86 Valcamonico A, Foschini M, Soregaroli M, Tarantini M, Frusca T. Low dose aspirin in pregnancy: a clinical and biochemical study of effects on the newborn. J Perinat Med 1993; 21 (03) 235-240
  • 87 Parker Jr CR, Hauth JC, Goldenberg RL, Cooper RL, Dubard MB. Umbilical cord serum levels of thromboxane B2 in term infants of women who participated in a placebo-controlled trial of low-dose aspirin. J Matern Fetal Med 2000; 9 (04) 209-215
  • 88 Louden KA, Broughton Pipkin F, Heptinstall S. , et al. Neonatal platelet reactivity and serum thromboxane B2 production in whole blood: the effect of maternal low dose aspirin. Br J Obstet Gynaecol 1994; 101 (03) 203-208
  • 89 Dasari R, Narang A, Vasishta K, Garewal G. Effect of maternal low dose aspirin on neonatal platelet function. Indian Pediatr 1998; 35 (06) 507-511
  • 90 Ward C, Lewis S, Coleman T. Prevalence of maternal smoking and environmental tobacco smoke exposure during pregnancy and impact on birth weight: retrospective study using Millennium Cohort. BMC Public Health 2007; 7: 81
  • 91 Paludetto R, Capasso L, Raimondi F. Infants of smoking mothers. In: Buonocore G, Bracci R, Weindling M. , eds. Neonatology. Cham, Switzerland: Springer International Publishing AG, part of Springer Nature; 2018: 709-716
  • 92 Anderson TM, Lavista Ferres JM, Ren SY. , et al. Maternal smoking before and during pregnancy and the risk of sudden unexpected infant death. Pediatrics 2019; 143 (04) e20183325
  • 93 Pamukcu B, Oflaz H, Onur I, Cimen A, Nisanci Y. Effect of cigarette smoking on platelet aggregation. Clin Appl Thromb Hemost 2011; 17 (06) E175-E180
  • 94 Sandhya M, Satyanarayana U, Mohanty S, Basalingappa DR. Impact of chronic cigarette smoking on platelet aggregation and coagulation profile in apparently healthy male smokers. Intl J Clin Experiment Physiol 2015; 2 (02) 128-133
  • 95 Mercelina-Roumans PE, Breukers RB, Ubachs JM, van Wersch JW. Hematological variables in cord blood of neonates of smoking and nonsmoking mothers. J Clin Epidemiol 1996; 49 (04) 449-454
  • 96 Shakhanbeh JM. Effect of prenatal cigarette smoke exposure on hematological characteristics in adult rat offspring. Jordan J Biol Sci 2016; 9 (03) 179-183
  • 97 Sokou R, Foudoulaki-Paparizos L, Lytras T. , et al. Reference ranges of thromboelastometry in healthy full-term and pre-term neonates. Clin Chem Lab Med 2017; 55 (10) 1592-1597
  • 98 Ahlsten G, Ewald U, Kindahl H, Tuvemo T. Aggregation of and thromboxane B2 synthesis in platelets from newborn infants of smoking and non-smoking mothers. Prostaglandins Leukot Med 1985; 19 (02) 167-176
  • 99 Abdwani R, Al Shaqsi L, Al-Zakwani I. Neonatal and obstetrical outcomes of pregnancies in systemic lupus erythematosus. Oman Med J 2018; 33 (01) 15-21
  • 100 Vanoni F, Lava SAG, Fossali EF. , et al. Neonatal systemic lupus erythematosus syndrome: a comprehensive review. Clin Rev Allergy Immunol 2017; 53 (03) 469-476
  • 101 Kobayashi R, Mii S, Nakano T, Harada H, Eto H. Neonatal lupus erythematosus in Japan: a review of the literature. Autoimmun Rev 2009; 8 (06) 462-466
  • 102 Cimaz R, Spence DL, Hornberger L, Silverman ED. Incidence and spectrum of neonatal lupus erythematosus: a prospective study of infants born to mothers with anti-Ro autoantibodies. J Pediatr 2003; 142 (06) 678-683
  • 103 Zuppa AA, Riccardi R, Frezza S. , et al. Neonatal lupus: follow-up in infants with anti-SSA/Ro antibodies and review of the literature. Autoimmun Rev 2017; 16 (04) 427-432
  • 104 Watson R, Kang JE, May M, Hudak M, Kickler T, Provost TT. Thrombocytopenia in the neonatal lupus syndrome. Arch Dermatol 1988; 124 (04) 560-563
  • 105 Ayadi ID, Ben Hamida E, Boukhris MR, Bezzine A, Chaouachi S, Marrakchi Z. Isolated anti-Ro/SSA thrombocytopenia: a rare feature of neonatal lupus. Pan Afr Med J 2015; 22: 312
  • 106 Negrini S, Pappalardo F, Murdaca G, Indiveri F, Puppo F. The antiphospholipid syndrome: from pathophysiology to treatment. Clin Exp Med 2017; 17 (03) 257-267
  • 107 Chou AK, Hsieh SC, Su YN. , et al. Neonatal and pregnancy outcome in primary antiphospholipid syndrome: a 10-year experience in one medical center. Pediatr Neonatol 2009; 50 (04) 143-146
  • 108 Johns EC, Denison FC, Norman JE, Reynolds RM. Gestational diabetes mellitus: mechanisms, treatment, and complications. Trends Endocrinol Metab 2018; 29 (11) 743-754
  • 109 American Diabetes Association. (2) Classification and diagnosis of diabetes. Diabetes Care 2015; 38 (Suppl. 01) S8-S16
  • 110 Plows JF, Stanley JL, Baker PN, Reynolds CM, Vickers MH. The pathophysiology of gestational diabetes mellitus. Int J Mol Sci 2018; 19: 3342
  • 111 Ashwal E, Hod M. Gestational diabetes mellitus: where are we now?. Clin Chim Acta 2015; 451 (Pt A): 14-20
  • 112 Ozder A, Eker HH. Investigation of mean platelet volume in patients with type 2 diabetes mellitus and in subjects with impaired fasting glucose: a cost-effective tool in primary health care?. Int J Clin Exp Med 2014; 7 (08) 2292-2297
  • 113 Shah B, Sha D, Xie D, Mohler III ER, Berger JS. The relationship between diabetes, metabolic syndrome, and platelet activity as measured by mean platelet volume: the National Health And Nutrition Examination Survey, 1999-2004. Diabetes Care 2012; 35 (05) 1074-1078
  • 114 Iyidir OT, Degertekin CK, Yilmaz BA, Toruner FB, Akturk M, Arslan M. Elevated mean platelet volume is associated with gestational diabetes mellitus. Gynecol Endocrinol 2014; 30 (09) 640-643
  • 115 Rusak T, Misztal T, Rusak M, Branska-Januszewska J, Tomasiak M. Involvement of hyperglycemia in the development of platelet procoagulant response: the role of aldose reductase and platelet swelling. Blood Coagul Fibrinolysis 2017; 28 (06) 443-451
  • 116 Neergaard-Petersen S, Hvas AM, Grove EL, Larsen SB, Gregersen S, Kristensen SD. The influence of haemoglobin A1c levels on platelet aggregation and platelet turnover in patients with coronary artery disease treated with aspirin. PLoS One 2015; 10 (07) e0132629
  • 117 Arthur JF, Jandeleit-Dahm K, Andrews RK. Platelet hyperreactivity in diabetes: focus on GPVI signaling-are useful drugs already available?. Diabetes 2017; 66 (01) 7-13
  • 118 Li Y, Woo V, Bose R, Li Y. Platelet hyperactivity and abnormal Ca(2+) homeostasis in diabetes mellitus. Am J Physiol Heart Circ Physiol 2001; 280 (04) H1480-H1489
  • 119 Santilli F, Simeone P, Liani R, Davì G. Platelets and diabetes mellitus. Prostaglandins Other Lipid Mediat 2015; 120: 28-39
  • 120 Ferreira IA, Mocking AI, Feijge MA. , et al. Platelet inhibition by insulin is absent in type 2 diabetes mellitus. Arterioscler Thromb Vasc Biol 2006; 26 (02) 417-422
  • 121 Kebapcilar L, Kebapcilar AG, Ilhan TT. , et al. Is the mean platelet volume a predictive marker of a low Apgar score and insulin resistance in gestational diabetes mellitus? A retrospective case-control study. J Clin Diagn Res 2016; 10 (10) OC06-OC10
  • 122 Green DW, Mimouni F, Khoury J. Decreased platelet counts in infants of diabetic mothers. Am J Perinatol 1995; 12 (02) 102-105
  • 123 Nelson SM, Freeman DJ, Sattar N, Lindsay RS. Erythrocytosis in offspring of mothers with Type 1 diabetes--are factors other than insulin critical determinants?. Diabet Med 2009; 26 (09) 887-892
  • 124 Stewart A, Malhotra A. Gestational diabetes and the neonate: challenges and solutions. Res Rep Neonatol 2015; 2015: 31-39
  • 125 Cines DB, Levine LD. Thrombocytopenia in pregnancy. Blood 2017; 130 (21) 2271-2277
  • 126 ACOG Practice Bulletin No. 207. Thrombocytopenia in pregnancy. Obstet Gynecol 2019; 133 (03) e181-e193
  • 127 Goldman BG, Hehir MP, Yambasu S, O'Donnell EM. The presentation and management of platelet disorders in pregnancy. Eur J Haematol 2018; 100 (06) 560-566
  • 128 Zdravic D, Yougbare I, Vadasz B. , et al. Fetal and neonatal alloimmune thrombocytopenia. Semin Fetal Neonatal Med 2016; 21 (01) 19-27
  • 129 Stanworth SJ. Thrombocytopenia, bleeding, and use of platelet transfusions in sick neonates. Hematology (Am Soc Hematol Educ Program) 2012; 2012: 512-516
  • 130 Ronzoni S, Keunen J, Shah PS. , et al. Management and neonatal outcomes of pregnancies with fetal/neonatal alloimmune thrombocytopenia: a single-center retrospective cohort study. Fetal Diagn Ther 2019; 45 (02) 85-93
  • 131 Winkelhorst D, Murphy MF, Greinacher A. , et al. Antenatal management in fetal and neonatal alloimmune thrombocytopenia: a systematic review. Blood 2017; 129 (11) 1538-1547
  • 132 Andrew M, Castle V, Mitchell L, Paes B. Modified bleeding time in the infant. Am J Hematol 1989; 30 (03) 190-191
  • 133 Gerrard JM, Docherty JC, Israels SJ. , et al. A reassessment of the bleeding time: association of age, hematocrit, platelet function, von Willebrand factor, and bleeding time thromboxane B2 with the length of the bleeding time. Clin Invest Med 1989; 12 (03) 165-171
  • 134 Sheffield MJ, Lambert DK, Baer VL. , et al. Effect of ampicillin on bleeding time in very low birth-weight neonates during the first week after birth. J Perinatol 2011; 31 (07) 477-480
  • 135 Bonduel M, Frontroth JP, Hepner M, Sciuccati G, Feliú-Torres A. Platelet aggregation and adenosine triphosphate release values in children and adults. J Thromb Haemost 2007; 5 (08) 1782-1783
  • 136 Tanous O, Steinberg Shemer O, Yacobovich J. , et al. Evaluating platelet function disorders in children with bleeding tendency - A single center study. Platelets 2017; 28 (07) 676-681
  • 137 Michelson AD, Barnard MR, Krueger LA, Frelinger III AL, Furman MI. Evaluation of platelet function by flow cytometry. Methods 2000; 21 (03) 259-270
  • 138 Rajasekhar D, Barnard MR, Bednarek FJ, Michelson AD. Platelet hyporeactivity in very low birth weight neonates. Thromb Haemost 1997; 77 (05) 1002-1007
  • 139 Pietrucha T, Wojciechowski T, Greger J. , et al. Differentiated reactivity of whole blood neonatal platelets to various agonists. Platelets 2001; 12 (02) 99-107
  • 140 Saving KL, Mankin PE, Gorman MJ. Differences in adhesion receptor expression between immature and older platelets and red blood cells of neonates and adults. J Pediatr Hematol Oncol 2002; 24 (02) 120-124
  • 141 Hézard N, Potron G, Schlegel N, Amory C, Leroux B, Nguyen P. Unexpected persistence of platelet hyporeactivity beyond the neonatal period: a flow cytometric study in neonates, infants and older children. Thromb Haemost 2003; 90 (01) 116-123
  • 142 Wasiluk A, Mantur M, Szczepański M, Kemona H, Baran E, Kemona-Chetnik I. The effect of gestational age on platelet surface expression of CD62P in preterm newborns. Platelets 2008; 19 (03) 236-238
  • 143 Baker-Groberg SM, Lattimore S, Recht M, McCarty OJ, Haley KM. Assessment of neonatal platelet adhesion, activation, and aggregation. J Thromb Haemost 2016; 14 (04) 815-827
  • 144 Shenkman B, Linder N, Savion N. , et al. Increased neonatal platelet deposition on subendothelium under flow conditions: the role of plasma von Willebrand factor. Pediatr Res 1999; 45 (02) 270-275
  • 145 Linder N, Shenkman B, Levin E. , et al. Deposition of whole blood platelets on extracellular matrix under flow conditions in preterm infants. Arch Dis Child Fetal Neonatal Ed 2002; 86 (02) F127-F130
  • 146 Carcao MD, Blanchette VS, Dean JA. , et al. The Platelet Function Analyzer (PFA-100): a novel in-vitro system for evaluation of primary haemostasis in children. Br J Haematol 1998; 101 (01) 70-73
  • 147 Israels SJ, Cheang T, McMillan-Ward EM, Cheang M. Evaluation of primary hemostasis in neonates with a new in vitro platelet function analyzer. J Pediatr 2001; 138 (01) 116-119
  • 148 Brown MA, Magee LA, Kenny LC. , et al; International Society for the Study of Hypertension in Pregnancy (ISSHP). Hypertensive disorders of pregnancy: ISSHP Classification, Diagnosis, and Management Recommendations for International Practice. Hypertension 2018; 72 (01) 24-43
  • 149 American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2018. Diabetes Care 2018; 41 (Suppl. 01) S13-S27
  • 150 Sitaru AG, Holzhauer S, Speer CP. , et al. Neonatal platelets from cord blood and peripheral blood. Platelets 2005; 16 (3-4): 203-221