Hamostaseologie 2020; 40(01): 105-118
DOI: 10.1055/s-0039-3400260
Review Article
Georg Thieme Verlag KG Stuttgart · New York

The Current Understanding of Molecular Pathogenesis of Quantitative von Willebrand Disease, Types 1 and 3

Hamideh Yadegari
1   Institute of Experimental Haematology and Transfusion Medicine, University Clinics Bonn, Bonn, NRW, Germany
,
Johannes Oldenburg
1   Institute of Experimental Haematology and Transfusion Medicine, University Clinics Bonn, Bonn, NRW, Germany
› Author Affiliations
Further Information

Publication History

16 March 2019

26 September 2019

Publication Date:
22 January 2020 (online)

Abstract

Von Willebrand disease (VWD), the most prevalent congenital bleeding disorder, arises from deficiencies in quantity or quality of von Willebrand factor (VWF). The quantitative deficiencies of VWF are considered to be either VWD type 1 (mild/moderate reduction of VWF) or type 3 (virtual absence of VWF). Following cloning of the VWF gene (VWF) in the 1980s, significant progress has been made in our understanding of the pathogenesis of VWD. The genetic basis of type 3 VWD is well defined. VWF causative variations comprising predominantly null alleles have been identified in more than 85% of cases. In contrast, the molecular mechanisms in type 1 disease are only partially characterized. The VWF sequence variations, including mostly missense alterations, are found in only approximately 65% of type 1 VWD patients. It appears that genetic elements outside of VWF may contribute to the pathophysiology of type 1 VWD. This review discusses in detail the current understandings of the genetic basis and molecular mechanisms causing quantitative deficiencies of VWF.

Zusammenfassung

Die Von Willebrand Erkrankung (VWE) ist die häufigsten erbliche Blutungsstörung, die durch Fehler im von Willebrand Faktor (VWF) verursacht wird. Diese Fehler können entweder zu einer Reduktion der VWF–Konzentration führen oder die Funktion des VWF beeinträchtigen. Wenn die VWF-Konzentration leicht bzw. mäßig reduziert ist, spricht man von einer VWE Typ 1, wenn praktisch kein VWF mehr nachweisbar ist von einer VWE Typ 3. Seit der Klonierung des VWF Gens (VWF) innerhalb der achtziger Jahre hat man viel über die Entstehung der VWE herausgefunden. Die genetische Basis des VWE Typ 3 ist relativ gut erklärt. VWF-verursachende Mutationen, die vorwiegend Null-Allele einschließen, wurden in mehr als 85% der Fälle identifiziert. Im Gegensatz dazu sind die genetischen Ursachen des VWE Typ 1 nur teilweise charakterisiert. Die VWF-Sequenzvariationen, die hauptsächlich Missense-Mutationen umfassen, werden nur bei ca. 65% der Patienten mit Typ 1 des VWE gefunden. Die Pathophysiologie der VWE des Typs 1 scheint zusätzlich noch durch genetische Faktoren beeinflusst zu werden, die außerhalb des VWF liegen. In dem hier vorliegenden Review werden ausführlich die genetischen Grundlagen sowie die molekularen Mechanismen diskutiert, die zu einer Reduktion der VWF-Konzentration führen.

# Recipient of the Günter Landbeck Award, 2016.


 
  • References

  • 1 Leebeek FWG, Eikenboom JCJ. Von Willebrand's disease. N Engl J Med 2017; 376 (07) 701-702
  • 2 Goodeve AC. The genetic basis of von Willebrand disease. Blood Rev 2010; 24 (03) 123-134
  • 3 Sadler JE. von Willebrand factor: two sides of a coin. J Thromb Haemost 2005; 3 (08) 1702-1709
  • 4 Sadler JE, Budde U, Eikenboom JCJ. , et al; Working Party on von Willebrand Disease Classification. Update on the pathophysiology and classification of von Willebrand disease: a report of the Subcommittee on von Willebrand factor. J Thromb Haemost 2006; 4 (10) 2103-2114
  • 5 Castaman G, Lethagen S, Federici AB. , et al. Response to desmopressin is influenced by the genotype and phenotype in type 1 von Willebrand disease (VWD): results from the European Study MCMDM-1VWD. Blood 2008; 111 (07) 3531-3539
  • 6 Tischer A, Machha VR, Frontroth JP. , et al. Enhanced local disorder in a clinically elusive von Willebrand factor provokes high-affinity platelet clumping. J Mol Biol 2017; 429 (14) 2161-2177
  • 7 Mancuso DJ, Tuley EA, Westfield LA. , et al. Structure of the gene for human von Willebrand factor. J Biol Chem 1989; 264 (33) 19514-19527
  • 8 Zhou Y-F, Eng ET, Zhu J, Lu C, Walz T, Springer TA. Sequence and structure relationships within von Willebrand factor. Blood 2012; 120 (02) 449-458
  • 9 Katsumi A, Tuley EA, Bodó I, Sadler JE. Localization of disulfide bonds in the cystine knot domain of human von Willebrand factor. J Biol Chem 2000; 275 (33) 25585-25594
  • 10 Voorberg J, Fontijn R, van Mourik JA, Pannekoek H. Domains involved in multimer assembly of von willebrand factor (vWF): multimerization is independent of dimerization. EMBO J 1990; 9 (03) 797-803
  • 11 Purvis AR, Gross J, Dang LT. , et al. Two Cys residues essential for von Willebrand factor multimer assembly in the Golgi. Proc Natl Acad Sci U S A 2007; 104 (40) 15647-15652
  • 12 Foster PA, Fulcher CA, Marti T, Titani K, Zimmerman TS. A major factor VIII binding domain resides within the amino-terminal 272 amino acid residues of von Willebrand factor. J Biol Chem 1987; 262 (18) 8443-8446
  • 13 Miyata S, Goto S, Federici AB, Ware J, Ruggeri ZM. Conformational changes in the A1 domain of von Willebrand factor modulating the interaction with platelet glycoprotein Ibalpha. J Biol Chem 1996; 271 (15) 9046-9053
  • 14 Pareti FI, Fujimura Y, Dent JA, Holland LZ, Zimmerman TS, Ruggeri ZM. Isolation and characterization of a collagen binding domain in human von Willebrand factor. J Biol Chem 1986; 261 (32) 15310-15315
  • 15 Yuan Y, Zhang W, Yan R. , et al. Identification of a novel 14-3-3zeta binding site within the cytoplasmic domain of platelet glycoprotein Ibalpha that plays a key role in regulating the von Willebrand factor binding function of glycoprotein Ib-IX. Circ Res 2009; 105 (12) 1177-1185
  • 16 Jaffe EA, Hoyer LW, Nachman RL. Synthesis of von Willebrand factor by cultured human endothelial cells. Proc Natl Acad Sci U S A 1974; 71 (05) 1906-1909
  • 17 Sporn LA, Chavin SI, Marder VJ, Wagner DD. Biosynthesis of von Willebrand protein by human megakaryocytes. J Clin Invest 1985; 76 (03) 1102-1106
  • 18 Zhou Y-F, Eng ET, Nishida N, Lu C, Walz T, Springer TA. A pH-regulated dimeric bouquet in the structure of von Willebrand factor. EMBO J 2011; 30 (19) 4098-4111
  • 19 Vischer UM, Wagner DD. von Willebrand factor proteolytic processing and multimerization precede the formation of Weibel-Palade bodies. Blood 1994; 83 (12) 3536-3544
  • 20 Zhou Y-F, Springer TA. Highly reinforced structure of a C-terminal dimerization domain in von Willebrand factor. Blood 2014; 123 (12) 1785-1793
  • 21 Lippok S, Kolšek K, Löf A. , et al. von Willebrand factor is dimerized by protein disulfide isomerase. Blood 2016; 127 (09) 1183-1191
  • 22 Journet AM, Saffaripour S, Wagner DD. Requirement for both D domains of the propolypeptide in von Willebrand factor multimerization and storage. Thromb Haemost 1993; 70 (06) 1053-1057
  • 23 Wise RJ, Pittman DD, Handin RI, Kaufman RJ, Orkin SH. The propeptide of von Willebrand factor independently mediates the assembly of von Willebrand multimers. Cell 1988; 52 (02) 229-236
  • 24 Wagner DD, Olmsted JB, Marder VJ. Immunolocalization of von Willebrand protein in Weibel-Palade bodies of human endothelial cells. J Cell Biol 1982; 95 (01) 355-360
  • 25 Mayadas T, Wagner DD, Simpson PJ. von Willebrand factor biosynthesis and partitioning between constitutive and regulated pathways of secretion after thrombin stimulation. Blood 1989; 73 (03) 706-711
  • 26 Lopes da Silva M, Cutler DF. von Willebrand factor multimerization and the polarity of secretory pathways in endothelial cells. Blood 2016; 128 (02) 277-285
  • 27 Canis K, McKinnon TAJ, Nowak A. , et al. Mapping the N-glycome of human von Willebrand factor. Biochem J 2012; 447 (02) 217-228
  • 28 Solecka BA, Weise C, Laffan MA, Kannicht C. Site-specific analysis of von Willebrand factor O-glycosylation. J Thromb Haemost 2016; 14 (04) 733-746
  • 29 Bowman M, Tuttle A, Notley C. , et al; Association of Hemophilia Clinic Directors of Canada. The genetics of Canadian type 3 von Willebrand disease: further evidence for co-dominant inheritance of mutant alleles. J Thromb Haemost 2013; 11 (03) 512-520
  • 30 Yadegari H, Driesen J, Pavlova A, Biswas A, Hertfelder HJ, Oldenburg J. Mutation distribution in the von Willebrand factor gene related to the different von Willebrand disease (VWD) types in a cohort of VWD patients. Thromb Haemost 2012; 108 (04) 662-671
  • 31 Veyradier A, Boisseau P, Fressinaud E. , et al; French Reference Center for von Willebrand disease. A laboratory phenotype/genotype correlation of 1167 French patients from 670 families with von Willebrand disease: a new epidemiologic picture. Medicine (Baltimore) 2016; 95 (11) e3038
  • 32 Flood VH, Christopherson PA, Gill JC. , et al. Clinical and laboratory variability in a cohort of patients diagnosed with type 1 VWD in the United States. Blood 2016; 127 (20) 2481-2488
  • 33 Goodeve A, Eikenboom J, Castaman G. , et al. Phenotype and genotype of a cohort of families historically diagnosed with type 1 von Willebrand disease in the European study, Molecular and Clinical Markers for the Diagnosis and Management of Type 1 von Willebrand Disease (MCMDM-1VWD). Blood 2007; 109 (01) 112-121
  • 34 James PD, Notley C, Hegadorn C. , et al. The mutational spectrum of type 1 von Willebrand disease: results from a Canadian cohort study. Blood 2007; 109 (01) 145-154
  • 35 Daidone V, Gallinaro L, Grazia Cattini M. , et al. An apparently silent nucleotide substitution (c.7056C>T) in the von Willebrand factor gene is responsible for type 1 von Willebrand disease. Haematologica 2011; 96 (06) 881-887
  • 36 Hampshire DJ, Goodeve AC. The molecular basis of von Willebrand disease: the under investigated, the unexpected and the overlooked. Haematologica 2011; 96 (06) 798-800
  • 37 Gill JC, Endres-Brooks J, Bauer PJ, Marks Jr WJ, Montgomery RR. The effect of ABO blood group on the diagnosis of von Willebrand disease. Blood 1987; 69 (06) 1691-1695
  • 38 Gallinaro L, Cattini MG, Sztukowska M. , et al. A shorter von Willebrand factor survival in O blood group subjects explains how ABO determinants influence plasma von Willebrand factor. Blood 2008; 111 (07) 3540-3545
  • 39 James PD, Lillicrap D. von Willebrand disease: clinical and laboratory lessons learned from the large von Willebrand disease studies. Am J Hematol 2012; 87 (Suppl. 01) S4-S11
  • 40 Budde U. Diagnosis of von Willebrand disease subtypes: implications for treatment. Haemophilia 2008; 14 (Suppl. 05) 27-38
  • 41 Bodó I, Katsumi A, Tuley EA, Eikenboom JC, Dong Z, Sadler JE. Type 1 von Willebrand disease mutation Cys1149Arg causes intracellular retention and degradation of heterodimers: a possible general mechanism for dominant mutations of oligomeric proteins. Blood 2001; 98 (10) 2973-2979
  • 42 Castaman G, Eikenboom JC, Missiaglia E, Rodeghiero F. Autosomal dominant type 1 von willebrand disease due to G3639T mutation (C1130F) in exon 26 of von Willebrand factor gene: description of five Italian families and evidence for a founder effect. Br J Haematol 2000; 108 (04) 876-879
  • 43 Casonato A, Cattini MG, Barbon G, Daidone V, Pontara E. Severe, recessive type 1 is a discrete form of von Willebrand disease: the lesson learned from the c.1534-3C>A von Willebrand factor mutation. Thromb Res 2015; 136 (03) 682-686
  • 44 Corrales I, Ramírez L, Altisent C, Parra R, Vidal F. The study of the effect of splicing mutations in von Willebrand factor using RNA isolated from patients' platelets and leukocytes. J Thromb Haemost 2011; 9 (04) 679-688
  • 45 Gallinaro L, Sartorello F, Pontara E. , et al. Combined partial exon skipping and cryptic splice site activation as a new molecular mechanism for recessive type 1 von Willebrand disease. Thromb Haemost 2006; 96 (06) 711-716
  • 46 Hawke L, Bowman ML, Poon M-C, Scully MF, Rivard GE, James PD. Characterization of aberrant splicing of von Willebrand factor in von Willebrand disease: an underrecognized mechanism. Blood 2016; 128 (04) 584-593
  • 47 Berber E, Ozbil M, Brown C, Baslar Z, Caglayan SH, Lillicrap D. Functional characterisation of the type 1 von Willebrand disease candidate VWF gene variants: p.M771I, p.L881R and p.P1413L. Blood Transfus 2017; 15 (06) 548-556
  • 48 Castaman G, Giacomelli SH, Jacobi PM. , et al. Reduced von Willebrand factor secretion is associated with loss of Weibel-Palade body formation. J Thromb Haemost 2012; 10 (05) 951-958
  • 49 Eikenboom J, Hilbert L, Ribba AS. , et al. Expression of 14 von Willebrand factor mutations identified in patients with type 1 von Willebrand disease from the MCMDM-1VWD study. J Thromb Haemost 2009; 7 (08) 1304-1312
  • 50 Groeneveld DJ, Wang J-W, Mourik MJ. , et al. Storage and secretion of naturally occurring von Willebrand factor A domain variants. Br J Haematol 2014; 167 (04) 529-540
  • 51 Schneppenheim R, Budde U, Batlle J. , et al. Intracellular retention, enhanced clearance, and defective FVIII binding are common features of Von Willebrand factor D'-D3 domain mutations in patients with Von Willebrand disease type 1 from the European Mcmdm-1VWD study. Blood 2012; 120 (21) 99
  • 52 Shapiro SE, Nowak AA, Wooding C, Birdsey G, Laffan MA, McKinnon TA. The von Willebrand factor predicted unpaired cysteines are essential for secretion. J Thromb Haemost 2014; 12 (02) 246-254
  • 53 Wang J-W, Valentijn KM, de Boer HC. , et al. Intracellular storage and regulated secretion of von Willebrand factor in quantitative von Willebrand disease. J Biol Chem 2011; 286 (27) 24180-24188
  • 54 Wang J-W, Groeneveld DJ, Cosemans G. , et al. Biogenesis of Weibel-Palade bodies in von Willebrand's disease variants with impaired von Willebrand factor intrachain or interchain disulfide bond formation. Haematologica 2012; 97 (06) 859-866
  • 55 Wang J-W, Bouwens EAM, Pintao MC. , et al. Analysis of the storage and secretion of von Willebrand factor in blood outgrowth endothelial cells derived from patients with von Willebrand disease. Blood 2013; 121 (14) 2762-2772
  • 56 White-Adams TC, Ng CJ, Jacobi PM, Haberichter SL, Di Paola JA. Mutations in the D'D3 region of VWF traditionally associated with type 1 VWD lead to quantitative and qualitative deficiencies of VWF. Thromb Res 2016; 145: 112-118
  • 57 Yadegari H, Driesen J, Pavlova A. , et al. Insights into pathological mechanisms of missense mutations in C-terminal domains of von Willebrand factor causing qualitative or quantitative von Willebrand disease. Haematologica 2013; 98 (08) 1315-1323
  • 58 Casari C, Lenting PJ, Wohner N, Christophe OD, Denis CV. Clearance of von Willebrand factor. J Thromb Haemost 2013; 11 (Suppl. 01) 202-211
  • 59 Haberichter SL, Balistreri M, Christopherson P. , et al. Assay of the von Willebrand factor (VWF) propeptide to identify patients with type 1 von Willebrand disease with decreased VWF survival. Blood 2006; 108 (10) 3344-3351
  • 60 Millar CM, Riddell AF, Brown SA. , et al. Survival of von Willebrand factor released following DDAVP in a type 1 von Willebrand disease cohort: influence of glycosylation, proteolysis and gene mutations. Thromb Haemost 2008; 99 (05) 916-924
  • 61 Sanders YV, Groeneveld D, Meijer K. , et al; WiN study group. von Willebrand factor propeptide and the phenotypic classification of von Willebrand disease. Blood 2015; 125 (19) 3006-3013
  • 62 Rawley O, O'Sullivan JM, Chion A. , et al. von Willebrand factor arginine 1205 substitution results in accelerated macrophage-dependent clearance in vivo. J Thromb Haemost 2015; 13 (05) 821-826
  • 63 Schooten CJ, Tjernberg P, Westein E. , et al. Cysteine-mutations in von Willebrand factor associated with increased clearance. J Thromb Haemost 2005; 3 (10) 2228-2237
  • 64 Haberichter SL, Castaman G, Budde U. , et al. Identification of type 1 von Willebrand disease patients with reduced von Willebrand factor survival by assay of the VWF propeptide in the European study: molecular and clinical markers for the diagnosis and management of type 1 VWD (MCMDM-1VWD). Blood 2008; 111 (10) 4979-4985
  • 65 Chion A, O'Sullivan JM, Drakeford C. , et al. N-linked glycans within the A2 domain of von Willebrand factor modulate macrophage-mediated clearance. Blood 2016; 128 (15) 1959-1968
  • 66 O'Sullivan JM, Aguila S, McRae E. , et al. N-linked glycan truncation causes enhanced clearance of plasma-derived von Willebrand factor. J Thromb Haemost 2016; 14 (12) 2446-2457
  • 67 Pruss CM, Golder M, Bryant A. , et al. Pathologic mechanisms of type 1 VWD mutations R1205H and Y1584C through in vitro and in vivo mouse models. Blood 2011; 117 (16) 4358-4366
  • 68 Wang QY, Song J, Gibbs RA, Boerwinkle E, Dong JF, Yu FL. Characterizing polymorphisms and allelic diversity of von Willebrand factor gene in the 1000 genomes. J Thromb Haemost 2013; 11 (02) 261-269
  • 69 Daidone V, Pontara E, Romualdi C. , et al. Microsatellite (GT)(n) is part of the von Willebrand factor (VWF) promoter region that influences the glucocorticoid-induced increase in VWF in Cushing's syndrome. Thromb Res 2010; 125 (06) e275-e280
  • 70 Di Bitondo R, Cameron CL, Daly ME. , et al. The -1185 A/G and -1051 G/A dimorphisms in the von Willebrand factor gene promoter and risk of myocardial infarction. Br J Haematol 2001; 115 (03) 701-706
  • 71 Keightley AM, Lam YM, Brady JN, Cameron CL, Lillicrap D. Variation at the von Willebrand factor (vWF) gene locus is associated with plasma vWF:Ag levels: identification of three novel single nucleotide polymorphisms in the vWF gene promoter. Blood 1999; 93 (12) 4277-4283
  • 72 Berber E, James PD, Hough C, Lillicrap D. An assessment of the pathogenic significance of the R924Q von Willebrand factor substitution. J Thromb Haemost 2009; 7 (10) 1672-1679
  • 73 Antoni G, Oudot-Mellakh T, Dimitromanolakis A. , et al. Combined analysis of three genome-wide association studies on vWF and FVIII plasma levels. BMC Med Genet 2011; 12: 102
  • 74 Sanders YV, van der Bom JG, Isaacs A. , et al; WiN Study Group. CLEC4M and STXBP5 gene variations contribute to von Willebrand factor level variation in von Willebrand disease. J Thromb Haemost 2015; 13 (06) 956-966
  • 75 Smith NL, Chen M-H, Dehghan A. , et al; Wellcome Trust Case Control Consortium. Novel associations of multiple genetic loci with plasma levels of factor VII, factor VIII, and von Willebrand factor: the CHARGE (Cohorts for Heart and Aging Research in Genome Epidemiology) consortium. Circulation 2010; 121 (12) 1382-1392
  • 76 Stockley J, Nisar SP, Leo VC. , et al; GAPP Study in Collaboration with the MCMDM-1VWD Study Group. Identification and characterization of novel variations in platelet G-protein coupled receptor (GPCR) genes in patients historically diagnosed with type 1 von Willebrand disease. PLoS One 2015; 10 (12) e0143913
  • 77 van Loon JE, Sanders YV, de Wee EM, Kruip MJ, de Maat MP, Leebeek FW. Effect of genetic variation in STXBP5 and STX2 on von Willebrand factor and bleeding phenotype in type 1 von Willebrand disease patients. PLoS One 2012; 7 (07) e40624
  • 78 van Loon J, Dehghan A, Weihong T. , et al. Genome-wide association studies identify genetic loci for low von Willebrand factor levels. Eur J Hum Genet 2016; 24 (07) 1096
  • 79 Lillicrap D. Syntaxin-binding protein 5 exocytosis regulation: differential role in endothelial cells and platelets. J Clin Invest 2014; 124 (10) 4231-4233
  • 80 Rydz N, Swystun LL, Notley C. , et al. The C-type lectin receptor CLEC4M binds, internalizes, and clears von Willebrand factor and contributes to the variation in plasma von Willebrand factor levels. Blood 2013; 121 (26) 5228-5237
  • 81 Castaman G, Rodeghiero F, Tosetto A. , et al. Hemorrhagic symptoms and bleeding risk in obligatory carriers of type 3 von Willebrand disease: an international, multicenter study. J Thromb Haemost 2006; 4 (10) 2164-2169
  • 82 Ahmad F, Budde U, Jan R. , et al. Phenotypic and molecular characterisation of type 3 von Willebrand disease in a cohort of Indian patients. Thromb Haemost 2013; 109 (04) 652-660
  • 83 Baronciani L, Cozzi G, Canciani MT. , et al. Molecular defects in type 3 von Willebrand disease: updated results from 40 multiethnic patients. Blood Cells Mol Dis 2003; 30 (03) 264-270
  • 84 Gupta PK, Saxena R, Adamtziki E. , et al. Genetic defects in von Willebrand disease type 3 in Indian and Greek patients. Blood Cells Mol Dis 2008; 41 (02) 219-222
  • 85 Sutherland MS, Keeney S, Bolton-Maggs PH, Hay CR, Will A, Cumming AM. The mutation spectrum associated with type 3 von Willebrand disease in a cohort of patients from the north west of England. Haemophilia 2009; 15 (05) 1048-1057
  • 86 Tjernberg P, Castaman G, Vos HL, Bertina RM, Eikenboom JC. Homozygous C2362F von Willebrand factor induces intracellular retention of mutant von Willebrand factor resulting in autosomal recessive severe von Willebrand disease. Br J Haematol 2006; 133 (04) 409-418
  • 87 Mohl A, Boda Z, Jager R. , et al. Common large partial VWF gene deletion does not cause alloantibody formation in the Hungarian type 3 von Willebrand disease population. J Thromb Haemost 2011; 9 (05) 945-952
  • 88 Corrales I, Ramírez L, Ayats J, Altisent C, Parra R, Vidal F. Integration of molecular and clinical data of 40 unrelated von Willebrand Disease families in a Spanish locus-specific mutation database: first release including 58 mutations. Haematologica 2010; 95 (11) 1982-1984
  • 89 James PD, Lillicrap D, Mannucci PM. Alloantibodies in von Willebrand disease. Blood 2013; 122 (05) 636-640
  • 90 Solimando M, Baronciani L, La Marca S. , et al. Molecular characterization, recombinant protein expression, and mRNA analysis of type 3 von Willebrand disease: Studies of an Italian cohort of 10 patients. Am J Hematol 2012; 87 (09) 870-874
  • 91 Baronciani L, Cozzi G, Canciani MT. , et al. Molecular characterization of a multiethnic group of 21 patients with type 3 von Willebrand disease. Thromb Haemost 2000; 84 (04) 536-540
  • 92 Kasatkar P, Shetty S, Ghosh K. Genetic heterogeneity in a large cohort of Indian type 3 von Willebrand disease patients. PLoS One 2014; 9 (03) e92575
  • 93 Jokela V, Lassila R, Szanto T. , et al. Phenotypic and genotypic characterization of 10 Finnish patients with von Willebrand disease type 3: discovery of two main mutations. Haemophilia 2013; 19 (06) e344-e348
  • 94 Castaman G, Platè M, Giacomelli SH, Rodeghiero F, Duga S. Alterations of mRNA processing and stability as a pathogenic mechanism in von Willebrand factor quantitative deficiencies. J Thromb Haemost 2010; 8 (12) 2736-2742
  • 95 Yadegari H, Driesen J, Hass M, Budde U, Pavlova A, Oldenburg J. Large deletions identified in patients with von Willebrand disease using multiple ligation-dependent probe amplification. J Thromb Haemost 2011; 9 (05) 1083-1086
  • 96 Sutherland MS, Cumming AM, Bowman M. , et al. A novel deletion mutation is recurrent in von Willebrand disease types 1 and 3. Blood 2009; 114 (05) 1091-1098
  • 97 Schneppenheim R, Castaman G, Federici AB. , et al. A common 253-kb deletion involving VWF and TMEM16B in German and Italian patients with severe von Willebrand disease type 3. J Thromb Haemost 2007; 5 (04) 722-728
  • 98 Starke RD, Paschalaki KE, Dyer CEF. , et al. Cellular and molecular basis of von Willebrand disease: studies on blood outgrowth endothelial cells. Blood 2013; 121 (14) 2773-2784
  • 99 Zhang ZP, Blombäck M, Egberg N, Falk G, Anvret M. Characterization of the von Willebrand factor gene (VWF) in von Willebrand disease type III patients from 24 families of Swedish and Finnish origin. Genomics 1994; 21 (01) 188-193
  • 100 Ouyang W, Yu Z, Yin J, Su J, Yang C, Ruan C. Two novel mutations identified in a type 3 von Willebrand disease patient. Blood Coagul Fibrinolysis 2014; 25 (08) 909-911
  • 101 Borràs N, Batlle J, Pérez-Rodríguez A. , et al. Molecular and clinical profile of von Willebrand disease in Spain (PCM-EVW-ES): comprehensive genetic analysis by next-generation sequencing of 480 patients. Haematologica 2017; 102 (12) 2005-2014
  • 102 Baronciani L, Federici AB, Cozzi G. , et al. Expression studies of missense mutations p.D141Y, p.C275S located in the propeptide of von Willebrand factor in patients with type 3 von Willebrand disease. Haemophilia 2008; 14 (03) 549-555
  • 103 Yin J, Ma Z, Su J. , et al. Mutations in the D1 domain of von Willebrand factor impair their propeptide-dependent multimerization, intracellular trafficking and secretion. J Hematol Oncol 2015; 8: 73
  • 104 Allen S, Abuzenadah AM, Hinks J. , et al. A novel von Willebrand disease-causing mutation (Arg273Trp) in the von Willebrand factor propeptide that results in defective multimerization and secretion. Blood 2000; 96 (02) 560-568
  • 105 Daidone V, Barbon G, Pontara E. , et al. Loss of cysteine 584 impairs the storage and release, but not the synthesis of von Willebrand factor. Thromb Haemost 2014; 112 (06) 1159-1166
  • 106 Rosenberg JB, Haberichter SL, Jozwiak MA. , et al. The role of the D1 domain of the von Willebrand factor propeptide in multimerization of VWF. Blood 2002; 100 (05) 1699-1706
  • 107 Hampshire DJ, Abuzenadah AM, Cartwright A. , et al. Identification and characterisation of mutations associated with von Willebrand disease in a Turkish patient cohort. Thromb Haemost 2013; 110 (02) 264-274
  • 108 Robertson JD, Yenson PR, Rand ML. , et al. Expanded phenotype-genotype correlations in a pediatric population with type 1 von Willebrand disease. J Thromb Haemost 2011; 9 (09) 1752-1760
  • 109 Liang Q, Qin H, Ding Q. , et al. Molecular and clinical profile of VWD in a large cohort of Chinese population: application of next generation sequencing and CNVplex® technique. Thromb Haemost 2017; 117 (08) 1534-1548
  • 110 Corrales I, Ramírez L, Altisent C, Parra R, Vidal F. Rapid molecular diagnosis of von Willebrand disease by direct sequencing. Detection of 12 novel putative mutations in VWF gene. Thromb Haemost 2009; 101 (03) 570-576
  • 111 Casonato A, Gallinaro L, Cattini MG. , et al. Type 1 von Willebrand disease due to reduced von Willebrand factor synthesis and/or survival: observations from a case series. Transl Res 2010; 155 (04) 200-208
  • 112 Casaña P, Martínez F, Haya S, Tavares A, Aznar JA. New mutations in exon 28 of the von Willebrand factor gene detected in patients with different types of von Willebrand's disease. Haematologica 2001; 86 (04) 414-419
  • 113 Holmberg L, Dent JA, Schneppenheim R, Budde U, Ware J, Ruggeri ZM. von Willebrand factor mutation enhancing interaction with platelets in patients with normal multimeric structure. J Clin Invest 1993; 91 (05) 2169-2177
  • 114 Melo-Nava BM, Benítez H, Palacios JJ. , et al. Molecular study of VWF gene from Mexican Mestizo patients with von Willebrand disease, and the finding of three new mutations. Blood Cells Mol Dis 2007; 39 (03) 361-365
  • 115 Johansson AM, Halldén C, Säll T, Lethagen S. Variation in the VWF gene in Swedish patients with type 1 von Willebrand disease. Ann Hum Genet 2011; 75 (04) 447-455
  • 116 Johnsen JM, Auer PL, Morrison AC. , et al; NHLBI Exome Sequencing Project. Common and rare von Willebrand factor (VWF) coding variants, VWF levels, and factor VIII levels in African Americans: the NHLBI Exome Sequencing Project. Blood 2013; 122 (04) 590-597
  • 117 Lavin M, Aguila S, Schneppenheim S. , et al. Novel insights into the clinical phenotype and pathophysiology underlying low VWF levels. Blood 2017; 130 (21) 2344-2353
  • 118 Schneppenheim R, Krey S, Bergmann F. , et al. Genetic heterogeneity of severe von Willebrand disease type III in the German population. Hum Genet 1994; 94 (06) 640-652