Semin Respir Crit Care Med 2020; 41(01): 131-140
DOI: 10.1055/s-0039-3400957
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Phaeohyphomycosis

Jonathan T. Arcobello
1   Infectious Disease Department, Wayne State University, Detroit, Michigan
,
Sanjay G. Revankar
1   Infectious Disease Department, Wayne State University, Detroit, Michigan
› Author Affiliations
Further Information

Publication History

Publication Date:
30 January 2020 (online)

Abstract

Phaeohyphomycosis refers to infections due to a large group of heterogenous organisms called “dematiaceous” or “melanized” fungi. These fungi are distinguished by the predominance of melanin in their cell walls, which likely acts as a virulence factor. Virtually, everyone is exposed to dematiaceous fungi through inhalation, as they are ubiquitous in the environment, although the development of infection is extremely uncommon. Invasive disease is rare but remains important due to the ability to cause serious disease in immunocompetent and immunocompromised hosts, unlike other fungal infections such as aspergillosis. A large variety of invasive manifestations can be caused by these organisms, including deep local infections, pulmonary infection, cerebral infection, and disseminated disease, which is associated with high mortality. While advances in molecular techniques are promising, they have still not replaced histology and culture as the primary diagnostic tools. Therapy is not standardized and is based primarily on clinical experience from descriptive case reports.

 
  • References

  • 1 Revankar SG, Sutton DA. Melanized fungi in human disease. Clin Microbiol Rev 2010; 23 (04) 884-928
  • 2 Thomas E, Bertolotti A, Barreau A. , et al. From phaeohyphomycosis to disseminated chromoblastomycosis: a retrospective study of infections caused by dematiaceous fungi. Med Mal Infect 2018; 48 (04) 278-285
  • 3 Wong EH, Revankar SG. Dematiaceous molds. Infect Dis Clin North Am 2016; 30 (01) 165-178
  • 4 Wijayawardene N, Hyde K, Lumbsch T. , et al. Outline of ascomycota: 2017. Fungal Divers 2018; 88 (01) 167-263
  • 5 Hawksworth DL. A new dawn for the naming of fungi: impacts of decisions made in Melbourne in July 2011 on the future publication and regulation of fungal names. IMA Fungus 2011; 2 (02) 155-162
  • 6 Shelton BG, Kirkland KH, Flanders WD, Morris GK. Profiles of airborne fungi in buildings and outdoor environments in the United States. Appl Environ Microbiol 2002; 68 (04) 1743-1753
  • 7 Chowdhary A, Perfect J, de Hoog GS. Black molds and melanized yeasts pathogenic to humans. Cold Spring Harb Perspect Med 2014; 5 (08) a019570
  • 8 Poyntner C, Mirastschijski U, Sterflinger K, Tafer H. Transcriptome study of an Exophiala dermatitidis PKS1 mutant on an ex vivo skin model: is melanin important for infection?. Front Microbiol 2018; 9: 1457
  • 9 Hamilton AJ, Gomez BL. Melanins in fungal pathogens. J Med Microbiol 2002; 51 (03) 189-191
  • 10 van Duin D, Casadevall A, Nosanchuk JD. Melanization of Cryptococcus neoformans and Histoplasma capsulatum reduces their susceptibilities to amphotericin B and caspofungin. Antimicrob Agents Chemother 2002; 46 (11) 3394-3400
  • 11 Wang X, Zhang R, Wu W. , et al. Impaired specific antifungal immunity in CARD9-deficient patients with phaeohyphomycosis. J Invest Dermatol 2018; 138 (03) 607-617
  • 12 Lanternier F, Barbati E, Meinzer U. , et al. Inherited CARD9 deficiency in 2 unrelated patients with invasive Exophiala infection. J Infect Dis 2015; 211 (08) 1241-1250
  • 13 Corvilain E, Casanova J-L, Puel A. Inherited CARD9 deficiency: invasive disease caused by Ascomycete fungi in previously healthy children and adults. J Clin Immunol 2018; 38 (06) 656-693
  • 14 Naggie S, Perfect JR. Molds: hyalohyphomycosis, phaeohyphomycosis, and zygomycosis. Clin Chest Med 2009; 30 (02) 337-353 , vii–viii
  • 15 Guarner J, Brandt ME. Histopathologic diagnosis of fungal infections in the 21st century. Clin Microbiol Rev 2011; 24 (02) 247-280
  • 16 West KL, Proia AD, Puri PK. Fontana-Masson stain in fungal infections. J Am Acad Dermatol 2017; 77 (06) 1119-1125
  • 17 Revankar SG, Sutton DA, Rinaldi MG. Primary central nervous system phaeohyphomycosis: a review of 101 cases. Clin Infect Dis 2004; 38 (02) 206-216
  • 18 Revankar SG, Baddley JW, Chen SC-A. , et al. A Mycoses Study Group international prospective study of phaeohyphomycosis: an analysis of 99 proven/probable cases. Open Forum Infect Dis 2017; 4 (04) ofx200
  • 19 Ben-Ami R, Lewis RE, Raad II, Kontoyiannis DP. Phaeohyphomycosis in a tertiary care cancer center. Clin Infect Dis 2009; 48 (08) 1033-1041
  • 20 Labarca JA, Wagar EA, Grasmick AE, Kokkinos HM, Bruckner DA. Critical evaluation of 4-week incubation for fungal cultures: is the fourth week useful?. J Clin Microbiol 1998; 36 (12) 3683-3685
  • 21 Centers for Disease Control and Prevention. Biosafety in Microbiological and Biomedical Laboratories (BMBL) 5th Edition. Available at: https://www.cdc.gov/labs/BMBL.html . Accessed August 14, 2019
  • 22 Kantarcioglu AS, Guarro J, De Hoog S, Apaydin H, Kiraz N. An updated comprehensive systematic review of Cladophialophora bantiana and analysis of epidemiology, clinical characteristics, and outcome of cerebral cases. Med Mycol 2017; 55 (06) 579-604
  • 23 Cummings JR, Jamison GR, Boudreaux JW, Howles MJ, Walsh TJ, Hayden RT. Cross-reactivity of non-Aspergillus fungal species in the Aspergillus galactomannan enzyme immunoassay. Diagn Microbiol Infect Dis 2007; 59 (01) 113-115
  • 24 Ben-Ami R, Lasala PR, Lewis RE, Kontoyiannis DP. Lack of galactomannan reactivity in dematiaceous molds recovered from cancer patients with phaeohyphomycosis. Diagn Microbiol Infect Dis 2010; 66 (02) 200-203
  • 25 Malani AN, Singal B, Wheat LJ. , et al. (1,3)-β-d-glucan in cerebrospinal fluid for diagnosis of fungal meningitis associated with contaminated methylprednisolone injections. J Clin Microbiol 2015; 53 (03) 799-803
  • 26 Litvintseva AP, Lindsley MD, Gade L. , et al. Utility of (1-3)-β-D-glucan testing for diagnostics and monitoring response to treatment during the multistate outbreak of fungal meningitis and other infections. Clin Infect Dis 2014; 58 (05) 622-630
  • 27 Cuétara MS, Alhambra A, Moragues MD, González-Elorza E, Pontón J, del Palacio A. Detection of (1-->3)-beta-D-glucan as an adjunct to diagnosis in a mixed population with uncommon proven invasive fungal diseases or with an unusual clinical presentation. Clin Vaccine Immunol 2009; 16 (03) 423-426
  • 28 Schoch CL, Seifert KA, Huhndorf S. , et al; Fungal Barcoding Consortium; Fungal Barcoding Consortium Author List. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci U S A 2012; 109 (16) 6241-6246
  • 29 Valero C, de la Cruz-Villar L, Zaragoza Ó, Buitrago MJ. New panfungal real-time PCR assay for diagnosis of invasive fungal infections. J Clin Microbiol 2016; 54 (12) 2910-2918
  • 30 Ala-Houhala M, Koukila-Kähkölä P, Antikainen J, Valve J, Kirveskari J, Anttila V-J. Clinical use of fungal PCR from deep tissue samples in the diagnosis of invasive fungal diseases: a retrospective observational study. Clin Microbiol Infect 2018; 24 (03) 301-305
  • 31 Abliz P, Fukushima K, Takizawa K, Nishimura K. Identification of pathogenic dematiaceous fungi and related taxa based on large subunit ribosomal DNA D1/D2 domain sequence analysis. FEMS Immunol Med Microbiol 2004; 40 (01) 41-49
  • 32 Gomez CA, Budvytiene I, Zemek AJ, Banaei N. Performance of targeted fungal sequencing for culture-independent diagnosis of invasive fungal disease. Clin Infect Dis 2017; 65 (12) 2035-2041
  • 33 Stein M, Tran V, Nichol KA. , et al. Evaluation of three MALDI-TOF mass spectrometry libraries for the identification of filamentous fungi in three clinical microbiology laboratories in Manitoba, Canada. Mycoses 2018; 61 (10) 743-753
  • 34 Angeletti S. Matrix assisted laser desorption time of flight mass spectrometry (MALDI-TOF MS) in clinical microbiology. J Microbiol Methods 2017; 138: 20-29
  • 35 Schieffelin JS, Garcia-Diaz JB, Loss Jr GE. , et al. Phaeohyphomycosis fungal infections in solid organ transplant recipients: clinical presentation, pathology, and treatment. Transpl Infect Dis 2014; 16 (02) 270-278
  • 36 McCarty TP, Baddley JW, Walsh TJ. , et al; TRANSNET Investigators. Phaeohyphomycosis in transplant recipients: results from the Transplant Associated Infection Surveillance Network (TRANSNET). Med Mycol 2015; 53 (05) 440-446
  • 37 Chowdhary A, Meis JF, Guarro J. , et al; European Society of Clinical Microbiology and Infectious Diseases Fungal Infection Study Group; European Confederation of Medical Mycology. ESCMID and ECMM joint clinical guidelines for the diagnosis and management of systemic phaeohyphomycosis: diseases caused by black fungi. Clin Microbiol Infect 2014; 20 (Suppl. 03) 47-75
  • 38 Zieske LA, Kopke RD, Hamill R. Dematiaceous fungal sinusitis. Otolaryngol Head Neck Surg 1991; 105 (04) 567-577
  • 39 Ebright JR, Chandrasekar PH, Marks S, Fairfax MR, Aneziokoro A, McGinnis MR. Invasive sinusitis and cerebritis due to Curvularia clavata in an immunocompetent adult. Clin Infect Dis 1999; 28 (03) 687-689
  • 40 Smith RM, Schaefer MK, Kainer MA. , et al; Multistate Fungal Infection Outbreak Response Team. Fungal infections associated with contaminated methylprednisolone injections. N Engl J Med 2013; 369 (17) 1598-1609
  • 41 Kauffman CA, Malani AN. Fungal infections associated with contaminated steroid injections. Microbiol Spectr 2016; 4 (02) DOI: 10.1128/microbiolspec.E110-0005-2015.
  • 42 Centers for Disease Control and Prevention. Notes from the Field: Update on Multistate Outbreak of Fungal Infections Associated with Contaminated Methylprednisolone Injections, 2012–2014. Available at: https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6442a4.htm . Accessed August 23, 2019
  • 43 Taj-Aldeen SJ, Rammaert B, Gamaletsou M. , et al; International Osteoarticular Mycoses Consortium. Osteoarticular infections caused by non-Aspergillus filamentous fungi in adult and pediatric patients: a systematic review. Medicine (Baltimore) 2015; 94 (50) e2078
  • 44 Rodriguez-Tudela JL, Berenguer J, Guarro J. , et al. Epidemiology and outcome of Scedosporium prolificans infection, a review of 162 cases. Med Mycol 2009; 47 (04) 359-370
  • 45 Pinheiro RL, Cognialli RCR, Barros RC. , et al. Peritonitis by Exophiala dermatitidis in a pediatric patient. Med Mycol Case Rep 2019; 24: 18-22
  • 46 Guedri Y, Dammek N, Yaacoub A. , et al. Alternaria alternata peritonitis in a patient undergoing continuous ambulatory peritoneal dialysis. Saudi J Kidney Dis Transpl 2017; 28 (06) 1440-1442
  • 47 Subramanyam H, Elumalai R, Kindo AJ, Periasamy S. Curvularia lunata, a rare fungal peritonitis in continuous ambulatory peritoneal dialysis (CAPD); a rare case report. J Nephropharmacol 2015; 5 (01) 61-62
  • 48 Fox AR, Houser KH, Morris WR, Walton RC. Dematiaceous fungal endophthalmitis: report of a case and review of the literature. J Ophthalmic Inflamm Infect 2016; 6 (01) 43
  • 49 Slavin M, van Hal S, Sorrell TC. , et al; Australia and New Zealand Mycoses Interest Group. Invasive infections due to filamentous fungi other than Aspergillus: epidemiology and determinants of mortality. Clin Microbiol Infect 2015; 21 (05) 490.e1-490.e10
  • 50 Revankar SG, Patterson JE, Sutton DA, Pullen R, Rinaldi MG. Disseminated phaeohyphomycosis: review of an emerging mycosis. Clin Infect Dis 2002; 34 (04) 467-476
  • 51 Chen SC-A, Blyth CC, Sorrell TC, Slavin MA. Pneumonia and lung infections due to emerging and unusual fungal pathogens. Semin Respir Crit Care Med 2011; 32 (06) 703-716
  • 52 Borges Jr MC, Warren S, White W, Pellettiere EV. Pulmonary phaeohyphomycosis due to Xylohypha bantiana . Arch Pathol Lab Med 1991; 115 (06) 627-629
  • 53 Greig JR, Khan MA, Hopkinson NS, Marshall BG, Wilson PO, Rahman SU. Pulmonary infection with Scedosporium prolificans in an immunocompetent individual. J Infect 2001; 43 (01) 15-17
  • 54 Castro AS, Oliveira A, Lopes V. Pulmonary phaeohyphomycosis: a challenge to the clinician. Eur Respir Rev 2013; 22 (128) 187-188
  • 55 Deepak D, Singh Rajput M, Sharma B, Chowdhary A. Allergic bronchopulmonary mycosis due to fungi other than Aspergillus . Eur Ann Allergy Clin Immunol 2019; 51 (02) 75-79
  • 56 Chowdhary A, Agarwal K, Kathuria S, Gaur SN, Randhawa HS, Meis JF. Allergic bronchopulmonary mycosis due to fungi other than Aspergillus: a global overview. Crit Rev Microbiol 2014; 40 (01) 30-48
  • 57 Rosenberg M, Patterson R, Mintzer R, Cooper BJ, Roberts M, Harris KE. Clinical and immunologic criteria for the diagnosis of allergic bronchopulmonary aspergillosis. Ann Intern Med 1977; 86 (04) 405-414
  • 58 Patterson R, Greenberger PA, Halwig JM, Liotta JL, Roberts M. Allergic bronchopulmonary aspergillosis. Natural history and classification of early disease by serologic and roentgenographic studies. Arch Intern Med 1986; 146 (05) 916-918
  • 59 Ishiguro T, Takayanagi N, Uozumi R. , et al. Diagnostic criteria that can most accurately differentiate allergic bronchopulmonary mycosis from other eosinophilic lung diseases: a retrospective, single-center study. Respir Investig 2016; 54 (04) 264-271
  • 60 Velasco J, Revankar S. CNS infections caused by brown-black fungi. J Fungi (Basel) 2019; 5 (03) E60 . doi: 10.3390/jof5030060
  • 61 Khader A, Ambooken B, Binitha MP, Francis S, Kuttiyil AK, Sureshan DN. Disseminated cutaneous phaeohyphomycosis due to Cladophialophora bantiana . Indian J Dermatol Venereol Leprol 2015; 81 (05) 491-494
  • 62 Chakrabarti A, Kaur H, Rudramurthy SM. , et al. Brain abscess due to Cladophialophora bantiana: a review of 124 cases. Med Mycol 2016; 54 (02) 111-119
  • 63 Garzoni C, Markham L, Bijlenga P, Garbino J. Cladophialophora bantiana: a rare cause of fungal brain abscess. Clinical aspects and new therapeutic options. Med Mycol 2008; 46 (05) 481-486
  • 64 Delfino D, De Hoog S, Polonelli L. , et al. Survival of a neglected case of brain abscess caused by Cladophialophora bantiana . Med Mycol 2006; 44 (07) 651-654
  • 65 Ahmad M, Jacobs D, Wu HH. , et al. Cladophialophora Bantiana : a rare intracerebral fungal abscess-case series and review of literature. Surg J (N Y) 2017; 3 (02) e62-e68
  • 66 Lyons MK, Blair JE, Leslie KO. Successful treatment with voriconazole of fungal cerebral abscess due to Cladophialophora bantiana . Clin Neurol Neurosurg 2005; 107 (06) 532-534
  • 67 Al-Abdely HM, Alkhunaizi AM, Al-Tawfiq JA, Hassounah M, Rinaldi MG, Sutton DA. Successful therapy of cerebral phaeohyphomycosis due to Ramichloridium mackenziei with the new triazole posaconazole. Med Mycol 2005; 43 (01) 91-95
  • 68 Badali H, de Hoog GS, Curfs-Breuker I, Klaassen CHW, Meis JF. Use of amplified fragment length polymorphism to identify 42 Cladophialophora strains related to cerebral phaeohyphomycosis with in vitro antifungal susceptibility. J Clin Microbiol 2010; 48 (07) 2350-2356
  • 69 Dixon DM, Polak A. In vitro and in vivo drug studies with three agents of central nervous system phaeohyphomycosis. Chemotherapy 1987; 33 (02) 129-140
  • 70 Tirico MCCP, Neto CF, Cruz LL. , et al. Clinical spectrum of phaeohyphomycosis in solid organ transplant recipients. JAAD Case Rep 2016; 2 (06) 465-469
  • 71 Shoham S, Dominguez EA. ; AST Infectious Diseases Community of Practice. Emerging fungal infections in solid organ transplant recipients: guidelines of the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant 2019; 33 (09) e13525
  • 72 Santos DW, Camargo LF, Gonçalves SS. , et al. Melanized fungal infections in kidney transplant recipients: contributions to optimize clinical management. Clin Microbiol Infect 2017; 23 (05) 333.e9-333.e14
  • 73 Cuenca-Estrella M, Ruiz-Díez B, Martínez-Suárez JV, Monzón A, Rodríguez-Tudela JL. Comparative in-vitro activity of voriconazole (UK-109,496) and six other antifungal agents against clinical isolates of Scedosporium prolificans and Scedosporium apiospermum . J Antimicrob Chemother 1999; 43 (01) 149-151
  • 74 Araujo R, Oliveira M, Amorim A, Sampaio-Maia B. Unpredictable susceptibility of emerging clinical moulds to tri-azoles: review of the literature and upcoming challenges for mould identification. Eur J Clin Microbiol Infect Dis 2015; 34 (07) 1289-1301
  • 75 Pfaller MA, Messer SA, Rhomberg PR, Jones RN, Castanheira M. In vitro activities of isavuconazole and comparator antifungal agents tested against a global collection of opportunistic yeasts and molds. J Clin Microbiol 2013; 51 (08) 2608-2616
  • 76 Meletiadis J, Mouton JW, Meis JF, Verweij PE. In vitro drug interaction modeling of combinations of azoles with terbinafine against clinical Scedosporium prolificans isolates. Antimicrob Agents Chemother 2003; 47 (01) 106-117
  • 77 Howden BP, Slavin MA, Schwarer AP, Mijch AM. Successful control of disseminated Scedosporium prolificans infection with a combination of voriconazole and terbinafine. Eur J Clin Microbiol Infect Dis 2003; 22 (02) 111-113
  • 78 Jenks JD, Reed SL, Seidel D. , et al. Rare mould infections caused by Mucorales, Lomentospora prolificans and Fusarium, in San Diego, CA: the role of antifungal combination therapy. Int J Antimicrob Agents 2018; 52 (05) 706-712
  • 79 Martin-Vicente A, Guarro J, Capilla J. Does a triple combination have better activity than double combinations against multiresistant fungi? Experimental in vitro evaluation. Int J Antimicrob Agents 2017; 49 (04) 422-426
  • 80 Yustes C, Guarro J. In vitro synergistic interaction between amphotericin B and micafungin against Scedosporium spp. Antimicrob Agents Chemother 2005; 49 (08) 3498-3500
  • 81 Rodríguez MM, Calvo E, Serena C, Mariné M, Pastor FJ, Guarro J. Effects of double and triple combinations of antifungal drugs in a murine model of disseminated infection by Scedosporium prolificans . Antimicrob Agents Chemother 2009; 53 (05) 2153-2155
  • 82 Tong SYC, Peleg AY, Yoong J, Handke R, Szer J, Slavin M. Breakthrough Scedosporium prolificans infection while receiving voriconazole prophylaxis in an allogeneic stem cell transplant recipient. Transpl Infect Dis 2007; 9 (03) 241-243
  • 83 Hagiya H, Maeda T, Kusakabe S. , et al. A fatal case of Exophiala dermatitidis disseminated infection in an allogenic hematopoietic stem cell transplant recipient during micafungin therapy. J Infect Chemother 2019; 25 (06) 463-466
  • 84 Wiederhold NP, Law D, Birch M. Dihydroorotate dehydrogenase inhibitor F901318 has potent in vitro activity against Scedosporium species and Lomentospora prolificans . J Antimicrob Chemother 2017; 72 (07) 1977-1980
  • 85 Hospenthal DR. Uncommon fungi and related species. In: Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases. Philadelphia, PA: Elsevier/Saunders; 2015: 3003-3015
  • 86 Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi—Third Edition. CLSI standard M38. Wayne, PA: Clinical and Laboratory Standards Institute; 2017
  • 87 Revankar SG. Therapy of infections caused by dematiaceous fungi. Expert Rev Anti Infect Ther 2005; 3 (04) 601-612
  • 88 Zheng H, He Y, Kan S. , et al. In vitro susceptibility of dematiaceous fungi to nine antifungal agents determined by two different methods. Mycoses 2019; 62 (04) 384-390
  • 89 Lyskova P, Kubanek M, Hubka V. , et al. Successful posaconazole therapy of disseminated alternariosis due to Alternaria infectoria in a heart transplant recipient. Mycopathologia 2017; 182 (3-4): 297-303
  • 90 Yamazaki T, Inagaki Y, Fujii T. , et al. In vitro activity of isavuconazole against 140 reference fungal strains and 165 clinically isolated yeasts from Japan. Int J Antimicrob Agents 2010; 36 (04) 324-331
  • 91 Espinel-Ingroff A. In vitro antifungal activities of anidulafungin and micafungin, licensed agents and the investigational triazole posaconazole as determined by NCCLS methods for 12,052 fungal isolates: review of the literature. Rev Iberoam Micol 2003; 20 (04) 121-136
  • 92 Revankar SG, Nailor MD, Sobel JD. Use of terbinafine in rare and refractory mycoses. Future Microbiol 2008; 3 (01) 9-17
  • 93 Mariné M, Pastor FJ, Guarro J. Combined antifungal therapy in a murine model of disseminated infection by Cladophialophora bantiana . Med Mycol 2009; 47 (01) 45-49