CC BY-NC-ND 4.0 · J Neuroanaesth Crit Care 2020; 07(02): 096-103
DOI: 10.1055/s-0040-1701590
Commentary

Clinical and Electrophysiological Differentiation between Periodical and Epileptic Discharges

Vitaliy V. Podlepich
1   Neur ocritical Care Unit, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
,
Ivan A. Savin
1   Neur ocritical Care Unit, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
› Author Affiliations

Abstract

Clinical differentiation between nonconvulsive status epilepticus (NCSE) and encephalopathy remains challenging. Some patients with encephalopathy exhibit periodic discharges on electroencephalography. In certain cases, however, it is rather difficult to differentiate between epileptic and periodic discharges. The lack of clear differentiation criteria makes it difficult to effectively analyze the studies in this field. In patients with refractory status epilepticus, the wrong diagnosis can lead to insufficient therapy, thereby increasing the frequency of convulsions and the likelihood of a poor outcome. Alternatively, aggressive therapy with antiepileptic drugs and anesthetic agents can aggravate neuronal damage and worsen encephalopathy. In this review, we aimed to determine whether clinical and instrumental methods can be used to differentiate between encephalopathy and epileptic states, to improve the selection of the appropriate treatment strategies. The review considers different approaches to diagnosing encephalopathy and seizures in critically ill patients. In spite of electroencephalography (EEG) still being the main method used to objectively identify brain dysfunction and diagnose epileptic discharges over the past 60 years, improvements in EEG techniques have been accompanied by increase in our understanding of the limitations of electrophysiological methods, leading to the use of additional tools for the differential diagnosis of seizures and encephalopathy. Current studies aim to develop multimodal approaches to the differential diagnosis of encephalopathy and NCSE. Modern reports describe clinical and instrumental approaches for accurately differentiating encephalopathy and epileptic conditions in patients treated in the intensive care unit based on clinical data, EEG, magnetic resonance imaging, positron emission tomography, biochemical analyses, and immune values.



Publication History

Article published online:
27 March 2020

© .

Thieme Medical and Scientific Publishers Private Ltd.
A-12, Second Floor, Sector -2, NOIDA -201301, India

 
  • References

  • 1 Panayiotis N.Varelas, Claassen J.. Seizures in Critical Care. A Guide to Diagnosis and Therapeutics. 3rd ed. New York, NY: Humana Press; 2017: 103-117
  • 2 The British Medical Association. Illustrated Medical Dictionary BMA. DK: The British Medical Association (BMA) 2013
  • 3 Larner AJ. A Dictionary of Neurological Signs. 4th ed. Cham, Switzerland: Springer; 2016
  • 4 Faigle R, Sutter R, Kaplan PW. Electroencephalography of encephalopathy in patients with endocrine and metabolic disorders. J Clin Neurophysiol 2013; 30 (05) 505-516
  • 5 Fugate JE. Anoxic-ischemic brain injury. Neurol Clin 2017; 35 (04) 601-611
  • 6 Elmer J, Callaway CW. The brain after cardiac arrest. Semin Neurol 2017; 37 (01) 19-24
  • 7 Rubinos C, Ruland S. Neurologic complications in the intensive care unit. Curr Neurol Neurosci Rep 2016; 16 (06) 57
  • 8 Barake M, Klibanski A, Tritos NA. Management of endocrine disease: impulse control disorders in patients with hyperpolactinemia treated with dopamine agonists—how much should we worry?. Eur J Endocrinol 2018; 179 (06) R287-R296
  • 9 He XY, Dobkin C, Yang SY. 17β-hydroxysteroid dehydrogenases and neurosteroid metabolism in the central nervous system. Mol Cell Endocrinol 2019; 489: 92-97
  • 10 Achinger SG, Ayus JC. Treatment of hyponatremic encephalopathy in the critically ill. Crit Care Med 2017; 45 (10) 1762-1771
  • 11 White J, Weinstein SA, De Haro L. et al. Mushroom poisoning: a proposed new clinical classification. Toxicon 2019; 157: 53-65
  • 12 Robba C, Crippa IA, Taccone FS. Septic encephalopathy. Curr Neurol Neurosci Rep 2018; 18 (12) 82
  • 13 O’Horo JC, Sampathkumar P. Infections in neurocritical care. Neurocrit Care 2017; 27 (03) 458-467
  • 14 Shan F, Long Y, Qiu W. Autoimmune glial fibrillary acidic protein astrocytopathy: a review of the literature. Front Immunol 2018; 9: 2802
  • 15 Sahebari M, Rezaieyazdi Z, Khodashahi M, Abbasi B, Ayatollahi F. Brain single photon emission computed tomography scan (spect) and functional MRI in systemic lupus erythematosus patients with cognitive dysfunction: a systematic review. Asia Ocean J Nucl Med Biol 2018; 6 (02) 97-107
  • 16 Fauser S, Tumani H. Epilepsy. Handb Clin Neurol 2017; 146: 259-266
  • 17 Brophy GM, Bell R, Claassen J. et al. Neurocritical Care Society Status Epilepticus Guideline Writing Committee. Guidelines for the evaluation and management of status epilepticus. Neurocrit Care 2012; 17 (01) 3-23
  • 18 Andresen JM, Girard TD, Pandharipande PP, Davidson MA, Ely EW, Watson PL. Burst suppression on processed electroencephalography as a predictor of postcoma delirium in mechanically ventilated ICU patients. Crit Care Med 2014; 42 (10) 2244-2251
  • 19 Pohlmann-Eden B, Hoch DB, Cochius JI, Chiappa KH. Periodic lateralized epileptiform discharges—a critical review. J Clin Neurophysiol 1996; 13 (06) 519-530
  • 20 Chong DJ, Hirsch LJ. Which EEG patterns warrant treatment in the critically ill? Reviewing the evidence for treatment of periodic epileptiform discharges and related patterns. J Clin Neurophysiol 2005; 22 (02) 79-91
  • 21 Cobb W, Hill D. Electroencephalogram in subacute progressive encephalitis. Brain 1950; 73 (03) 392-404
  • 22 Raroque Jr HG, Purdy P. Lesion localization in periodic lateralized epileptiform discharges: gray or white matter. Epilepsia 1995; 36 (01) 58-62
  • 23 Kalamangalam GP, Slater JD. Periodic lateralized epileptiform discharges and afterdischarges: common dynamic mechanisms. J Clin Neurophysiol 2015; 32 (04) 331-340
  • 24 Kalamangalam GP, Tandon N, Slater JD. Dynamic mechanisms underlying afterdischarge: a human subdural recording study. Clin Neurophysiol 2014; 125 (07) 1324-1338
  • 25 Howarth C, Gleeson P, Attwell D. Updated energy budgets for neural computation in the neocortex and cerebellum. J Cereb Blood Flow Metab 2012; 32 (07) 1222-1232
  • 26 Gross DW, Quesney LF, Sadikot AF. Chronic periodic lateralized epileptiform discharges during sleep in a patient with caudate nucleus atrophy: insights into the anatomical circuitry of PLEDs. Electroencephalogr Clin Neurophysiol 1998; 107 (06) 434-438
  • 27 Fishman O, Legatt AD. PLEDs following control of seizures and at the end of life. Clin EEG Neurosci 2010; 41 (01) 11-14
  • 28 Wyler AR, Ojemann GA, Ward AA Jr. Neurons in human epileptic cortex: correlation between unit and EEG activity. Ann Neurol 1982; 11 (03) 301-308
  • 29 Trinka E, Brigo F, Shorvon S. Recent advances in status epilepticus. Curr Opin Neurol 2016; 29 (02) 189-198
  • 30 Bate L, Gardiner M. Molecular genetics of human epilepsies. Expert Rev Mol Med 1999; 1999: 1-22
  • 31 Naylor DE, Liu H, Wasterlain CG. Trafficking of GABA(A) receptors, loss of inhibition, and a mechanism for pharmacoresistance in status epilepticus. J Neurosci 2005; 25 (34) 7724-7733
  • 32 Avanzini G, Franceschetti S, Avoni P, Liguori R. Molecular biology of channelopathies: impact on diagnosis and treatment. Expert Rev Neurother 2004; 4 (03) 519-539
  • 33 Hirsch LJ, Brenner RP, Drislane FW. et al. The ACNS subcommittee on research terminology for continuous EEG monitoring: proposed standardized terminology for rhythmic and periodic EEG patterns encountered in critically ill patients. J Clin Neurophysiol 2005; 22 (02) 128-135
  • 34 Hirsch LJ, LaRoche SM, Gaspard N. et al. American Clinical Neurophysiology Society’s Standardized Critical Care EEG Terminology: 2012 version. J Clin Neurophysiol 2013; 30 (01) 1-27
  • 35 Brenner RP. Is it status?. Epilepsia 2002; 43 Suppl 3 103-113
  • 36 Trinka E, Leitinger M. Which EEG patterns in coma are nonconvulsive status epilepticus?. Epilepsy Behav 2015; 49: 203-222
  • 37 Kuroiwa Y, Celesia GG. Clinical significance of periodic EEG patterns. Arch Neurol 1980; 37 (01) 15-20
  • 38 Yemisci M, Gurer G, Saygi S, Ciger A. Generalised periodic epileptiform discharges: clinical features, neuroradiological evaluation and prognosis in 37 adult patients. Seizure 2003; 12 (07) 465-472
  • 39 San-Juan OD, Chiappa KH, Costello DJ, Cole AJ. Periodic epileptiform discharges in hypoxic encephalopathy: BiPLEDs and GPEDs as a poor prognosis for survival. Seizure 2009; 18 (05) 365-368
  • 40 Foreman B, Claassen J, Abou Khaled K. et al. Generalized periodic discharges in the critically ill: a case-control study of 200 patients. Neurology 2012; 79 (19) 1951-1960
  • 41 Rodriguez Ruiz A, Vlachy J, Lee JW. et al. Critical Care EEG Monitoring Research Consortium. Association of periodic and rhythmic electroencephalographic patterns with seizures in critically ill patients. JAMA Neurol 2017; 74 (02) 181-188
  • 42 Beretta S, Coppo A, Bianchi E. et al. Neurologic outcome of postanoxic refractory status epilepticus after aggressive treatment. Neurology 2018; 91 (23) e2153-e2162
  • 43 Carrera E, Claassen J, Oddo M, Emerson RG, Mayer SA, Hirsch LJ. Continuous electroencephalographic monitoring in critically ill patients with central nervous system infections. Arch Neurol 2008; 65 (12) 1612-1618
  • 44 Claassen J, Jetté N, Chum F. et al. Electrographic seizures and periodic discharges after intracerebral hemorrhage. Neurology 2007; 69 (13) 1356-1365
  • 45 Viarasilpa T, Panyavachiraporn N, Osman G. et al. Electrographic seizures in patients with acute encephalitis. Neurocrit Care 2019; 30 (01) 207-215
  • 46 Snodgrass SM, Tsuburaya K, Ajmone-Marsan C. Clinical significance of periodic lateralized epileptiform discharges: relationship with status epilepticus. J Clin Neurophysiol 1989; 6 (02) 159-172
  • 47 García-Morales I, García MT, Galán-Dávila L. et al. Periodic lateralized epileptiform discharges: etiology, clinical aspects, seizures, and evolution in 130 patients. J Clin Neurophysiol 2002; 19 (02) 172-177
  • 48 Orta DS, Chiappa KH, Quiroz AZ, Costello DJ, Cole AJ. Prognostic implications of periodic epileptiform discharges. Arch Neurol 2009; 66 (08) 985-991
  • 49 Claassen J, Mayer SA, Kowalski RG, Emerson RG, Hirsch LJ. Detection of electrographic seizures with continuous EEG monitoring in critically ill patients. Neurology 2004; 62 (10) 1743-1748
  • 50 Koren J, Herta J, Draschtak S. et al. Early epileptiform discharges and clinical signs predict nonconvulsive status epilepticus on continuous EEG. Neurocrit Care 2018; 29 (03) 388-395
  • 51 Goyal MK, Sinha S, Ravishankar S, Shivshankar JJ. Peri-ictal signal changes in seven patients with status epilepticus: interesting MRI observations. Neuroradiology 2009; 51 (03) 151-161
  • 52 Bozkurt MF, Saygi S, Erbas B. SPECT in a patient with postictal PLEDs: is hyperperfusion evidence of electrical seizure?. Clin Electroencephalogr 2002; 33 (04) 171-173
  • 53 Handforth A, Cheng JT, Mandelkern MA, Treiman DM. Markedly increased mesiotemporal lobe metabolism in a case with PLEDs: further evidence that PLEDs are a manifestation of partial status epilepticus. Epilepsia 1994; 35 (04) 876-881
  • 54 Assal F, Papazyan JP, Slosman DO, Jallon P, Goerres GW. SPECT in periodic lateralized epileptiform discharges (PLEDs): a form of partial status epilepticus?. Seizure 2001; 10 (04) 260-265
  • 55 Struck AF, Westover MB, Hall LT, Deck GM, Cole AJ, Rosenthal ES. Metabolic correlates of the ictal-interictal continuum: FDG-PET during continuous EEG. Neurocrit Care 2016; 24 (03) 324-331
  • 56 Rennebaum F, Kassubek J, Pinkhardt E. et al. Status epilepticus: clinical characteristics and EEG patterns associated with and without MRI diffusion restriction in 69 patients. Epilepsy Res 2016; 120: 55-64
  • 57 Narayanan J. Can diffusion-weighted imaging be used as a tool to predict seizures in patients with PLEDS?. Epileptic Disord 2016; 18 (04) 440-446
  • 58 Vespa P, Tubi M, Claassen J. et al. Metabolic crisis occurs with seizures and periodic discharges after brain trauma. Ann Neurol 2016; 79 (04) 579-590
  • 59 Vespa PM, Miller C, McArthur D. et al. Nonconvulsive electrographic seizures after traumatic brain injury result in a delayed, prolonged increase in intracranial pressure and metabolic crisis. Crit Care Med 2007; 35 (12) 2830-2836
  • 60 Katyal N, Sarwal A, George P, Banik B, Newey CR. The relationship of triphasic waves with intracranial pressure as a possible prognostic marker in traumatic brain injury. Case Rep Neurol Med 2017; 2017: 4742026
  • 61 Westhall E, Rosén I, Rundgren M. et al. Time to epileptiform activity and EEG background recovery are independent predictors after cardiac arrest. Clin Neurophysiol 2018; 129 (08) 1660-1668
  • 62 Alvarez V, Drislane FW, Westover MB, Dworetzky BA, Lee JW. Characteristics and role in outcome prediction of continuous EEG after status epilepticus: a prospective observational cohort. Epilepsia 2015; 56 (06) 933-941
  • 63 Yoshimura H, Matsumoto R, Ueda H. et al. Status epilepticus in the elderly: prognostic implications of rhythmic and periodic patterns in electroencephalography and hyperintensities on diffusion-weighted imaging. J Neurol Sci 2016; 370: 284-289
  • 64 Yoshimura H, Matsumoto R, Ueda H. et al. Status epilepticus in the elderly: comparison with younger adults in a comprehensive community hospital. Seizure 2018; 61: 23-29
  • 65 Bauerschmidt A, Rubinos C, Claassen J. Approach to managing periodic discharges. J Clin Neurophysiol 2018; 35 (04) 309-313
  • 66 Kapinos G, Trinka E, Kaplan PW. Multimodal approach to decision to treat critically ill patients with periodic or rhythmic patterns using an ictal-interictal continuum spectral severity score. J Clin Neurophysiol 2018; 35 (04) 314-324