Open Access
CC BY-NC-ND 4.0 · J Neuroanaesth Crit Care 2020; 7(01): 01-02
DOI: 10.1055/s-0040-1701955
Editorial

Artificial Intelligence in Neurointensive Care Unit: A Cautious Leap into Future

Authors

  • Parmod K. Bithal

    1   Division of Neuroanesthesiology, Department of Anesthesiology and Perioperative Medicine, King Fahad Medical City, Riyadh, Saudi Arabia
Preview

Artificial intelligence (AI) is the branch of computer science dealing with the simulation of intelligent behavior in computers.[1] Computers play a key role in almost every aspect of our daily life. In healthcare, computers are an excellent means of storage of patient-related data. The amount of data gleaned electronically from patients admitted in the intensive care units (ICUs) has been growing rapidly every day. Several equipment, such as pressure transducers, infusion pumps, electrocardiography (ECG), pulse oximeters, cardiac output monitors, fluids intake and output monitors, temperature, neurological examination, and mechanical ventilators, interface with computers and store electronic data. Similarly, a wealth of information is recorded from each patient in the ICU, including high-resolution physiological signals, various laboratory tests, and details of medical history in electronic health records (EHRs).[2] Computerized ICU systems interface, in turn, provide access to hospital database, including demographic, electronic patient records, order entry, laboratory, pharmacy, and radiological systems. To be of use, it is necessary that ICU bedside data must be extracted and organized to become information for clinical decisions.[3] AI can assist not only in administering repetitive patient assessment in real time, but also in integrating and interpreting these data source with EHR data, thus potentially enabling more timely and targeted interventions.[4] [5] Closed-loop AI systems can monitor parameters of patients; then, directly treat patients and induce changes in those very parameters that are undergoing monitoring. These systems can make direct real-time adjustments to patient care without any human input.[6] AI has proved effective in lowering cost, expanding access, and improving healthcare fields. The application of AI in medicine has been related to the development of AI programs, intended to help the clinician in the making of a diagnosis, adopting therapeutic decisions, and forecasting outcomes. It plays a pivotal role by forewarning impending complications, thereby resulting in a faster response by the clinician.[7] AI in an ICU setting could decrease clinicians’ as well as nurses’ workload, thereby allowing them to focus their attention on critical tasks. It could also augment human decision-making by offering low-cost, high-capacity intelligent data processing.



Publikationsverlauf

Artikel online veröffentlicht:
25. März 2020

© .

Thieme Medical and Scientific Publishers Private Ltd.
A-12, Second Floor, Sector -2, NOIDA -201301, India