Semin Neurol 2020; 40(03): 335-341
DOI: 10.1055/s-0040-1702940
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Targeted Treatments for Inherited Neuromuscular Diseases of Childhood

Alex J. Fay
1   Department of Neurology, University of California San Francisco, San Francisco, California
,
Renatta Knox
2   Department of Neurology, Ohio State University, Columbus, Ohio
,
Erin E. Neil
3   Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
,
Jonathan Strober
1   Department of Neurology, University of California San Francisco, San Francisco, California
› Author Affiliations
Funding Alex J. Fay is supported by NIH K12 Award.
Further Information

Publication History

Publication Date:
15 April 2020 (online)

Abstract

In the past decade, the number of genes linked to neuromuscular diseases of childhood has expanded dramatically, and this genetic information is forming the basis for gene-specific and even mutation-specific therapies. At the forefront of these advances are the two recently approved treatments for spinal muscular atrophy: one, an antisense oligonucleotide that modifies splicing of the SMN2 gene, and, the other, a gene therapy vector that delivers the SMN1 gene to motor neurons, both of which are allowing patients to acquire developmental milestones previously unseen in this fatal disease. This review highlights these advances and emerging targeted therapies for Duchenne muscular dystrophy and centronuclear myopathy, while also covering enzyme replacement therapy and small molecule-based targeted therapies for conditions such as Pompe's disease and congenital myasthenic syndromes. With these and other newer techniques for targeted correction of genetic defects, such as CRISPR/Cas9, there is now hope that treatments for many more genetic diseases of the nervous system will follow in the near future.

 
  • References

  • 1 Darras BT. Spinal muscular atrophies. Pediatr Clin North Am 2015; 62 (03) 743-766
  • 2 Goyal N, Narayanaswami P. Making sense of antisense oligonucleotides: a narrative review. Muscle Nerve 2018; 57 (03) 356-370
  • 3 Hua Y, Vickers TA, Baker BF, Bennett CF, Krainer AR. Enhancement of SMN2 exon 7 inclusion by antisense oligonucleotides targeting the exon. PLoS Biol 2007; 5 (04) e73
  • 4 Chiriboga CA, Swoboda KJ, Darras BT. , et al. Results from a phase 1 study of nusinersen (ISIS-SMN(Rx)) in children with spinal muscular atrophy. Neurology 2016; 86 (10) 890-897
  • 5 Finkel RS, Mercuri E, Darras BT. , et al; ENDEAR Study Group. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N Engl J Med 2017; 377 (18) 1723-1732
  • 6 Chiriboga CA. Nusinersen for the treatment of spinal muscular atrophy. Expert Rev Neurother 2017; 17 (10) 955-962
  • 7 De Vivo D, Hwu W, Reyna S. , et al. Interim efficacy and safety results from the phase 2 NURTURE study evaluating nusinersen in presymptomatic infants with spinal muscular atrophy (Abstract S46.003). Presented at the 69th American Academy of Neurology Meeting April 22–27, 1017, Boston, MA.
  • 8 Mercuri E, Darras BT, Chiriboga CA. , et al; CHERISH Study Group. Nusinersen versus sham control in later-onset spinal muscular atrophy. N Engl J Med 2018; 378 (07) 625-635
  • 9 Poirier A, Weetall M, Heinig K. , et al. Risdiplam distributes and increases SMN protein in both the central nervous system and peripheral organs. Pharmacol Res Perspect 2018; 6 (06) e00447
  • 10 Kletzl H, Marquet A, Günther A. , et al. The oral splicing modifier RG7800 increases full length survival of motor neuron 2 mRNA and survival of motor neuron protein: results from trials in healthy adults and patients with spinal muscular atrophy. Neuromuscul Disord 2019; 29 (01) 21-29
  • 11 Sturm S, Günther A, Jaber B. , et al. A phase 1 healthy male volunteer single escalating dose study of the pharmacokinetics and pharmacodynamics of risdiplam (RG7916, RO7034067), a SMN2 splicing modifier. Br J Clin Pharmacol 2019; 85 (01) 181-193
  • 12 Friedmann T, Roblin R. Gene therapy for human genetic disease?. Science 1972; 175 (4025): 949-955
  • 13 Russell S, Bennett J, Wellman JA. , et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet 2017; 390 (10097): 849-860
  • 14 Asokan A, Schaffer DV, Samulski RJ. The AAV vector toolkit: poised at the clinical crossroads. Mol Ther 2012; 20 (04) 699-708
  • 15 Deyle DR, Russell DW. Adeno-associated virus vector integration. Curr Opin Mol Ther 2009; 11 (04) 442-447
  • 16 Mendell JR, Al-Zaidy S, Shell R. , et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med 2017; 377 (18) 1713-1722
  • 17 U.S. Food and Drug Administration. FDA approves innovative gene therapy to treat pediatric patients with spinal muscular atrophy, a rare disease and leading genetic cause of infant mortality. https://www.fda.gov/news-events/press-announcements/fda-approves-innovative-gene-therapy-treat-pediatric-patients-spinal-muscular-atrophy-rare-disease . Accessed May 5, 2019
  • 18 Bailey RM, Armao D, Nagabhushan Kalburgi S, Gray SJ. Development of Intrathecal AAV9 gene therapy for giant axonal neuropathy. Mol Ther Methods Clin Dev 2018; 9: 160-171
  • 19 Kagiava A, Sargiannidou I, Theophilidis G. , et al. Intrathecal gene therapy rescues a model of demyelinating peripheral neuropathy. Proc Natl Acad Sci U S A 2016; 113 (17) E2421-E2429
  • 20 Yalvac ME, Amornvit J, Chen L, Shontz KM, Lewis S, Sahenk Z. AAV1.NT-3 gene therapy increases muscle fiber diameter through activation of mTOR pathway and metabolic remodeling in a CMT mouse model. Gene Ther 2018; 25 (02) 129-138
  • 21 Matthews E, Brassington R, Kuntzer T, Jichi F, Manzur AY. Corticosteroids for the treatment of Duchenne muscular dystrophy. Cochrane Database Syst Rev 2016; (05) CD003725
  • 22 Wong BL, Rybalsky I, Shellenbarger KC. , et al. Long-term outcome of interdisciplinary management of patients with Duchenne muscular dystrophy receiving daily glucocorticoid treatment. J Pediatr 2017; 182: 296-303.e1
  • 23 Drachman DB, Toyka KV, Myer E. Prednisone in Duchenne muscular dystrophy. Lancet 1974; 2 (7894): 1409-1412
  • 24 Shieh PB, Mcintosh J, Jin F. , et al; THE ACT DMD STUDY GROUP. Deflazacort versus prednisone/prednisolone for maintaining motor function and delaying loss of ambulation: a post HOC analysis from the ACT DMD trial. Muscle Nerve 2018; 58 (05) 639-645
  • 25 Connolly AM, Schierbecker J, Renna R, Florence J. High dose weekly oral prednisone improves strength in boys with Duchenne muscular dystrophy. Neuromuscul Disord 2002; 12 (10) 917-925
  • 26 Conklin LS, Damsker JM, Hoffman EP. , et al. Phase IIa trial in Duchenne muscular dystrophy shows vamorolone is a first-in-class dissociative steroidal anti-inflammatory drug. Pharmacol Res 2018; 136: 140-150
  • 27 Finanger E, Vandenborne K, Finkel RS. , et al. Phase 1 study of edasalonexent (CAT-1004), an oral NF-κB inhibitor, in pediatric patients with Duchenne muscular dystrophy. J Neuromuscul Dis 2019; 6 (01) 43-54
  • 28 Wagner K, Wong B, Byrne B. , et al. A randomized, placebo-controlled, double-blind, Phase 1b/2 study of the novel antimyostatin adnectin RG6206 (BMS-986089) in ambulatory boys with Duchenne muscular dystrophy (P5.431). Neurology 2018; 90 (15) 5
  • 29 Evers MM, Toonen LJ, van Roon-Mom WM. Antisense oligonucleotides in therapy for neurodegenerative disorders. Adv Drug Deliv Rev 2015; 87: 90-103
  • 30 Lu QL, Yokota T, Takeda S, Garcia L, Muntoni F, Partridge T. The status of exon skipping as a therapeutic approach to duchenne muscular dystrophy. Mol Ther 2011; 19 (01) 9-15
  • 31 van Deutekom JC, Janson AA, Ginjaar IB. , et al. Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med 2007; 357 (26) 2677-2686
  • 32 Goemans NM, Tulinius M, van den Akker JT. , et al. Systemic administration of PRO051 in Duchenne's muscular dystrophy. N Engl J Med 2011; 364 (16) 1513-1522
  • 33 Aartsma-Rus A, Krieg AM. FDA approves eteplirsen for Duchenne muscular dystrophy: the next chapter in the eteplirsen saga. Nucleic Acid Ther 2017; 27 (01) 1-3
  • 34 Mendell JR, Goemans N, Lowes LP. , et al; Eteplirsen Study Group and Telethon Foundation DMD Italian Network. Longitudinal effect of eteplirsen versus historical control on ambulation in Duchenne muscular dystrophy. Ann Neurol 2016; 79 (02) 257-271
  • 35 Aartsma-Rus A, Goemans N. A sequel to the eteplirsen saga: eteplirsen is approved in the United States but was not approved in Europe. Nucleic Acid Ther 2019; 29 (01) 13-15
  • 36 England SB, Nicholson LV, Johnson MA. , et al. Very mild muscular dystrophy associated with the deletion of 46% of dystrophin. Nature 1990; 343 (6254): 180-182
  • 37 Mendell JR, Campbell K, Rodino-Klapac L. , et al. Dystrophin immunity in Duchenne's muscular dystrophy. N Engl J Med 2010; 363 (15) 1429-1437
  • 38 Al-Zaidy S, Rodino-Klapac L, Mendell JR. Gene therapy for muscular dystrophy: moving the field forward. Pediatr Neurol 2014; 51 (05) 607-618
  • 39 McDonald CM, Campbell C, Torricelli RE. , et al; Clinical Evaluator Training Group. ; ACT DMD Study Group. Ataluren in patients with nonsense mutation Duchenne muscular dystrophy (ACT DMD): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017; 390 (10101): 1489-1498
  • 40 Landfeldt E, Sejersen T, Tulinius M. A mini-review and implementation model for using ataluren to treat nonsense mutation Duchenne muscular dystrophy. Acta Paediatr 2019; 108 (02) 224-230
  • 41 Nelson CE, Robinson-Hamm JN, Gersbach CA. Genome engineering: a new approach to gene therapy for neuromuscular disorders. Nat Rev Neurol 2017; 13 (11) 647-661
  • 42 Ousterout DG, Kabadi AM, Thakore PI, Majoros WH, Reddy TE, Gersbach CA. Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat Commun 2015; 6: 6244
  • 43 Amoasii L, Hildyard JCW, Li H. , et al. Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science 2018; 362 (6410): 86-91
  • 44 Nelson CE, Wu Y, Gemberling MP. , et al. Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy. Nat Med 2019; 25 (03) 427-432
  • 45 Mendell JR, Chicoine LG, Al-Zaidy SA. , et al. Gene delivery for limb-girdle muscular dystrophy type 2D by isolated limb infusion. Hum Gene Ther 2019; 30 (07) 794-801
  • 46 Potter RA, Griffin DA, Sondergaard PC. , et al. Systemic delivery of dysferlin overlap vectors provides long-term gene expression and functional improvement for dysferlinopathy. Hum Gene Ther 2018; 29 (07) 749-762
  • 47 Jauvin D, Chrétien J, Pandey SK. , et al. Targeting DMPK with antisense oligonucleotide improves muscle strength in myotonic dystrophy type 1 mice. Mol Ther Nucleic Acids 2017; 7: 465-474
  • 48 Gualandi F, Manzati E, Sabatelli P. , et al. Antisense-induced messenger depletion corrects a COL6A2 dominant mutation in Ullrich myopathy. Hum Gene Ther 2012; 23 (12) 1313-1318
  • 49 Amalfitano A, Bengur AR, Morse RP. , et al. Recombinant human acid alpha-glucosidase enzyme therapy for infantile glycogen storage disease type II: results of a phase I/II clinical trial. Genet Med 2001; 3 (02) 132-138
  • 50 Lai CJ, Hsu TR, Yang CF, Chen SJ, Chuang YC, Niu DM. Cognitive development in infantile-onset Pompe disease under very early enzyme replacement therapy. J Child Neurol 2016; 31 (14) 1617-1621
  • 51 Kishnani PS, Goldenberg PC, DeArmey SL. , et al. Cross-reactive immunologic material status affects treatment outcomes in Pompe disease infants. Mol Genet Metab 2010; 99 (01) 26-33
  • 52 Engel AG. Genetic basis and phenotypic features of congenital myasthenic syndromes. Handb Clin Neurol 2018; 148: 565-589
  • 53 Farmakidis C, Pasnoor M, Barohn RJ, Dimachkie MM. Congenital myasthenic syndromes: a clinical and treatment approach. Curr Treat Options Neurol 2018; 20 (09) 36
  • 54 Schorling DC, Kirschner J, Bönnemann CG. Congenital muscular dystrophies and myopathies: an overview and update. Neuropediatrics 2017; 48 (04) 247-261
  • 55 Mack DL, Poulard K, Goddard MA. , et al. Systemic AAV8-mediated gene therapy drives whole-body correction of myotubular myopathy in dogs. Mol Ther 2017; 25 (04) 839-854
  • 56 Dowling JJD, , D Gonorazky H, Cohn RD, Campbell C. Treating pediatric neuromuscular disorders: the future is now. Am J Med Genet A 2018; 176 (04) 804-841