Synlett 2021; 32(01): 30-44
DOI: 10.1055/s-0040-1707197
account
© Georg Thieme Verlag Stuttgart · New York

Taming Nitrene Reactivity with Silver Catalysts

Logan E. Vine
,
,
J.M.S. is grateful to the National Science Foundation (NSF, Grant No. 1664374) for financial support of this research. The Paul Bender Chemistry Instrumentation Center was supported by: Thermo Q ExactiveTM Plus by the National Institutes of Health (NIH, Grant No. 1S10 OD020022-1); Bruker Quazar APEX2 and Bruker Avance-500 by a generous gift from Paul J. and Margaret M. Bender; Bruker Avance-600 by the National Institutes of Health (NIH, Grant No. S10 OK012245); Bruker Avance-400 by the National Science Foundation (NSF, Grant No. CHE-1048642) and the University of Wisconsin-Madison; Varian Mercury-300 by the National Science Foundation (NSF, Grant No. CHE-0342998).
Further Information

Publication History

Received: 29 May 2020

Accepted after revision: 12 June 2020

Publication Date:
29 July 2020 (online)


Indicates equal authorship.

Abstract

Nitrene transfer (NT) is a convenient strategy to directly transform C–H bonds into more valuable C–N bonds and exciting advances have been made to improve selectivity. Our work in silver-based NT has shown the unique ability of this metal to enable tunable chemo-, site-, and stereoselective reactions using simple N-dentate ligand scaffolds. Manipulation of the coordination environment and noncovalent interactions around the silver center furnish unprecedented catalyst control in selective NT and provide insights for further improvements in the field.

1 Introduction

1.1 Strategies for Nitrene Transfer

1.2 Brief Summary of Chemocatalyzed Nitrene Transfer

1.3 Focus of this Account

2 Challenges in Chemocatalyzed Nitrene Transfer

2.1 Reactivity Challenges

2.2 Selectivity Challenges

2.3 Chemoselective Nitrene Transfer

2.4 Site-Selective Nitrene Transfer

2.5 Enantioselective Nitrene Transfer

3 Summary and Perspective

3.1 Future Opportunities and Challenges

3.2 Conclusion

 
  • References

    • 1a Darses B, Rodrigues R, Neuville L, Mazurais M, Dauban P. Chem. Commun. 2017; 53: 493
    • 1b Lait SM, Rankic DA, Keay BA. Chem. Rev. 2007; 107: 767
    • 1c Palchykov VA, Gaponov AA. Adv. Heterocycl. Chem. 2020; 131: 285
    • 1d Ager DJ, Prakash I, Schaad DR. Chem. Rev. 1996; 96: 835
    • 1e Tok JB.-H, Rando RR. J. Am. Chem. Soc. 1998; 120: 8279
    • 1f O’Connell CE, Salvato KA, Meng Z, Littlefield BA, Schwartz CE. Bioorg. Med. Chem. Lett. 1999; 9: 1541
    • 2a McIntosh JA, Coelho PS, Farwell CC, Wang ZJ, Lewis JC, Brown TR, Arnold FA. Angew. Chem. Int. Ed. 2013; 52: 9309
    • 2b Hyster TK, Farwell CC, Buller AR, McIntosh JA, Arnold FH. J. Am. Chem. Soc. 2014; 136: 15505
    • 2c Prier CK, Zhang RK, Buller AR, Brinkmann-Chen S, Arnold FH. Nat. Chem. 2017; 9: 629
    • 2d Yang Y, Cho I, Qi X, Liu P, Arnold FA. Nat. Chem. 2019; 11: 987
    • 2e Dydio P, Key HM, Hayashi H, Clark DS, Hartwig JF. J. Am. Chem. Soc. 2017; 139; 1750
    • 2f Singh R, Bordeaux M, Fasan R. ACS Catal. 2014; 4: 546
  • 3 Bommarius AS. Annu. Rev. Chem. Biomol. Eng. 2015; 6: 319

    • For select reviews, see:
    • 4a Muller P, Fruit C. Chem. Rev. 2003; 103: 2905
    • 4b Driver TG. Org. Biomol. Chem. 2010; 8: 3831
    • 4c Chang JW. W, Ton TM. U, Chan PW. H. Chem. Rec. 2011; 11: 331
    • 4d Lu H, Zhang XP. Chem. Soc. Rev. 2011; 40: 1899
    • 4e Roizen JL, Harvey ME, Du Bois J. Acc. Chem. Res. 2012; 45: 911
    • 4f Gephart RT. III, Warren TH. Organometallics 2012; 31: 7728
    • 4g Dequirez G, Pons V, Dauban P. Angew. Chem. Int. Ed. 2012;  51: 7384
    • 4h Chu JC. K, Rovis T. Angew. Chem. Int. Ed. 2018; 57: 62
    • 4i Alderson JM, Corbin JR, Schomaker JM. Acc. Chem. Res. 2017; 50: 2147
  • 5 Kwart H, Kahn AA. J. Am. Chem. Soc. 1967; 89: 1951
  • 6 Breslow R, Gellman SH. J. Am. Chem. Soc. 1983; 105: 6728
  • 7 Evans DA, Faul MM, Bilodeau MT, Anderson BA, Barnes DM. J. Am. Chem. Soc. 1993; 115: 5328
  • 8 Li Z, Conser KR, Jacobsen EN. J. Am. Chem. Soc. 1993; 115: 5326
    • 9a Espino CG, Wehn PM, Chow J, Du Bois J. J. Am. Chem. Soc. 2001; 123: 6935
    • 9b Espino CG, Du Bois J. Angew. Chem. Int. Ed. 2001; 40: 598
    • 9c Espino CG, Fiori KW, Kim M, Du Bois J. J. Am. Chem. Soc. 2004; 126: 15378
    • 9d Fiori KW, Du Bois J. J. Am. Chem. Soc. 2007; 129: 562
    • 9e Harvey ME, Musaev DG, Du Bois J. J. Am. Chem. Soc. 2011; 133: 17207
    • 9f Roizen JL, Zalatan DN, Du Bois J. Angew. Chem. Int. Ed. 2013; 52: 11343
    • 9g Bess EN, DeLuca RJ, Tindall DJ, Oderinde MS, Roizen JL, Du Bois J, Sigman MS. J. Am. Chem. Soc. 2014; 136: 5783
    • 9h Chiappini ND, Mack JB. C, Du Bois J. Angew. Chem. Int. Ed. 2018; 57: 4956
    • 10a Fruit C, Robert-Peillard F, Bernardinelli G, Muller P, Dodd RH, Dauban P. Tetrahedron: Asymmetry 2005; 16: 3484
    • 10b Liang CG, Robert-Pedlard F, Fruit C, Muller P, Dodd RH, Dauban P. Angew. Chem. Int. Ed. 2006; 45: 4641
    • 10c Collet F, Lescot C, Liang C, Dauban P. Dalton Trans. 2010; 39: 10401
    • 10d Lescot C, Darses B, Collet F, Retailleau P, Dauban P. J. Org. Chem. 2012; 77: 7232
    • 11a Fantauzzi S, Caselli A, Gallo E. Dalton Trans. 2009; 28: 5434
    • 11b Lu H.-J, Jiang H.-L, Hu Y, Wojtas L, Zhang XP. Chem. Sci. 2011; 2: 2361
    • 11c Lyaskovskyy V, Suarez AI. O, Lu H.-J, Zhang XP, de Bruin B. J. Am. Chem. Soc. 2011; 133: 12264
    • 11d Lu H.-J, Li C.-Q, Jiang H.-L, Lizardi CL, Zhang XP. Angew. Chem. Int. Ed. 2014; 53: 7028
    • 11e Paradine SM, White MC. J. Am. Chem. Soc. 2012; 134: 2036
    • 11f Paradine SM, Griffin JR, Zhao J, Petronico AL, Miller SM, White MC. Nat. Chem. 2015; 7: 987
    • 11g Clark JR, Feng KF, Sookezian A, White MC. Nat. Chem. 2018; 10: 583
    • 12a Dauban P, Dodd R, Esteoule A, Duran F, Retailleau P. Synthesis 2007; 1251
    • 12b Barman DN, Nicholas KM. Eur. J. Org. Chem. 2011; 908
    • 12c Braga AA. C, Maseras F, Urbano J, Caballero A, Diaz-Requejo MM, Pérez PJ. Organometallics 2006; 25: 5292
    • 13a Li CQ, Lang K, Lu HJ, Hu Y, Cui X, Wojtas L, Zhang XP. Angew. Chem. Int. Ed. 2018; 57: 16837
    • 13b Lang K, Torker S, Wojtas L, Zhang XP. J. Am. Chem. Soc. 2019; 141: 12388
    • 13c Hu Y, Lang K, Li C, Gill JB, Kim I, Lu H, Fields KB, Marshall M, Cheng Q, Cui X, Wojtas L, Zhang XP. J. Am. Chem. Soc. 2019; 141: 18160
  • 14 Hong SY, Park Y, Hwang Y, Kim YB, Baik MH, Chang S. Science 2018; 359: 1016
  • 15 Cui Y, He C. J. Am. Chem. Soc. 2003; 125: 16202
  • 16 Li Z, Capretto DA, Rahaman R, He C. Angew. Chem. Int. Ed. 2007; 46: 5184
  • 17 Beltrán Á, Lescot C, Mar Díaz-Requejo M, Pérez PJ, Dauban P. Tetrahedron 2013; 69: 4488
  • 18 Llaveria J, Beltrán Á, Sameera WM. C, Locati A, Díaz-Requejo MM, Matheu MI, Castillón S, Maseras F, Pérez PJ. J. Am. Chem. Soc. 2014; 136: 5342
  • 19 Annapureddy RR, Jandl C, Bach T. J. Am. Chem. Soc. 2020; 142: 7374
    • 20a Smith PA. S, Brown BB. J. Am. Chem. Soc. 1951; 73: 2435
    • 20b Smith PA. S, Clegg JM, Hall JH. J. Org. Chem. 1958; 23: 524
    • 20c Barton DH. R, Morgan LR. Jr. J. Chem. Soc. 1962; 622
    • 21a Lebel H, Trudel C, Spitz C. Chem. Commun. 2012; 48: 7799
    • 21b Lebel H, Spitz C, Leogane O, Trudel C, Parmentier M. Org. Lett. 2011; 13: 5460
    • 22a Adams CS, Boralsky LA, Guzei IA, Schomaker JM. J. Am. Chem. Soc. 2012; 134: 10807
    • 22b Weatherly CD, Rigoli JW, Schomaker JM. Org. Lett. 2012; 14: 1704
    • 22c Rigoli JW, Boralsky LA, Hershberger JC, Meis AR, Guzei IA, Schomaker JM. J. Org. Chem. 2012; 77: 2446
    • 22d Liu L, Gerstner NC, Oxtoby LJ, Guzei IA, Schomaker JM. Org. Lett. 2017; 19: 3239
    • 23a Du J, Hu T, Zhang S, Zeng Y, Bu X. CrystEngComm 2008; 10: 1866
    • 23b Hung-Low F, Renz A, Klausmeyer KK. Polyhedron 2009; 28: 407
    • 23c Hung-Low F, Renz A, Klausmeyer KK. J. Chem. Crystallogr. 2011; 41: 1174
    • 23d Zhang H, Chen L, Song H, Zi G. Inorg. Chim. Acta 2011; 366: 320
    • 23e Schultheiss N, Powell DR, Bosch E. Inorg. Chem. 2003; 42: 5304
  • 24 Rigoli JW, Weatherly CD, Alderson J, Vo BT, Schomaker JM. J. Am. Chem. Soc. 2013; 135: 17238
  • 25 Weatherly CD, Alderson JM, Berry JF, Hein JE, Schomaker JM. Organometallics 2017; 36: 1649
  • 26 Dolan NS, Scamp RJ, Yang T, Berry JF, Schomaker JM. J. Am. Chem. Soc. 2016; 138: 14658
  • 27 Luo Y.-R. Handbook of Bond Dissociation Energies in Organic Compounds. CRC Press; Boca Raton: 2003
  • 28 Scamp R, Alderson JM, Phelps AM, Dolan NS, Schomaker JM. J. Am. Chem. Soc. 2014; 136: 16720
  • 29 Huang M, Corbin JR, Dolan NS, Fry CG, Vinokur A, Guzei IA, Schomaker JM. Inorg. Chem. 2017; 56: 6725
  • 30 Huang M, Paretsky J, Schomaker JM. ChemCatChem 2020; 12: 3076
  • 31 Huang M, Yang T, Paretsky J, Berry JF, Schomaker JM. J. Am. Chem. Soc. 2017; 139: 17376
  • 32 Scamp RJ, Jirak JG, Guzei IA, Schomaker JM. Org. Lett. 2016; 18: 3014
  • 33 Ju M, Huang M, Vine LF, Roberts JM, Dehghany M, Schomaker JM. Nat. Catal. 2019; 2: 899
  • 34 Liang J.-L, Yuan S.-X, Chan PW, Che C.-M. Tetrahedron Lett. 2003; 44: 5917
    • 35a Subbarayan V, Ruppel JV, Zhu S, Perman JA, Zhang XP. Chem. Commun. 2009; 28: 4266
    • 35b Kim C, Uchida T, Katsuki T. Chem. Commun. 2012; 48: 7188
  • 36 Ju M, Weatherly CD, Guzei IA, Schomaker JM. Angew. Chem. Int. Ed. 2017; 56: 9944
    • 37a Milczek E, Boudet N, Blakey S. Angew. Chem. Int. Ed. 2008; 47: 6825
    • 37b Zalatan DN, Du Bois J. J. Am. Chem. Soc. 2008; 130: 9220
    • 38a Park Y, Chang S. Nat. Catal. 2019; 2: 219
    • 38b Wang H, Park Y, Bai Z, Chang S, He G, Chen G. J. Am. Chem. Soc. 2019; 141: 7194
  • 39 Ju M, Zerull EE, Roberts JM, Huang M, Schomaker JM. J. Am. Chem. Soc. 2020; DOI: in press; 10.1021/jacs.0c05726.
    • 40a Whitesell JK. Chem. Rev. 1989; 89: 1581
    • 40b Rasappan R, Laventine D, Reiser O. Coord. Chem. Rev. 2008; 252: 702
    • 40c Desimoni G, Faita G, Jørgensen KA. Chem. Rev. 2011; 111: 284