J Knee Surg 2021; 34(13): 1476-1485
DOI: 10.1055/s-0040-1710366
Original Article

Synovial Fluid Mesenchymal Stem Cells for Knee Arthritis and Cartilage Defects: A Review of the Literature

1   Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, California
,
ZhiTao Sun
2   Department of Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangzhou, China
,
Xiao Chen
1   Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, California
,
Bo Han
3   Department of Surgery, USC Keck School of Medicine, Los Angeles, California
,
1   Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, California
› Author Affiliations

Abstract

Mesenchymal stem cells (MSCs) are adult stem cells that have the ability to self-renew and differentiate into several cell lineages including adipocytes, chondrocytes, tenocytes, bones, and myoblasts. These properties make the cell a promising candidate for regenerative medicine applications, especially when dealing with sports injuries in the knee. MSCs can be isolated from almost every type of adult tissue. However, most of the current research focuses on MSCs derived from bone marrow, adipose, and placenta derived products. Synovial fluid-derived MSCs (SF-MSCs) are relatively overlooked but have demonstrated promising therapeutic properties including possessing higher chondrogenic proliferation capabilities than other types of MSCs. Interestingly, SF-MSC population has shown to increase exponentially in patients with joint injury or disease, pointing to a potential use as a biomarker or as a treatment of some orthopaedic disorders. In this review, we go over the current literature on synovial fluid-derived MSCs including the characterization, the animal studies, and discuss future perspectives.



Publication History

Received: 08 October 2019

Accepted: 21 March 2020

Article published online:
13 May 2020

© 2020. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Longo UG, Petrillo S, Franceschetti E, Berton A, Maffulli N, Denaro V. Stem cells and gene therapy for cartilage repair. Stem Cells Int 2012; 2012: 168385
  • 2 Mardones R, Jofré CM, Minguell JJ. Cell therapy and tissue engineering approaches for cartilage repair and/or regeneration. Int J Stem Cells 2015; 8 (01) 48-53
  • 3 Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 2001; 98 (08) 2396-2402
  • 4 da Silva Meirelles L, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 2006; 119 (Pt 11): 2204-2213
  • 5 Zuk PA, Zhu M, Ashjian P. et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002; 13 (12) 4279-4295
  • 6 Hua J, Gong J, Meng H. et al. Comparison of different methods for the isolation of mesenchymal stem cells from umbilical cord matrix: proliferation and multilineage differentiation as compared to mesenchymal stem cells from umbilical cord blood and bone marrow. Cell Biol Int 2013; 38 (02) 198-210
  • 7 Kestendjieva S, Kyurkchiev D, Tsvetkova G. et al. Characterization of mesenchymal stem cells isolated from the human umbilical cord. Cell Biol Int 2008; 32 (07) 724-732
  • 8 Chen FH, Tuan RS. Mesenchymal stem cells in arthritic diseases. Arthritis Res Ther 2008; 10 (05) 223
  • 9 Jones EA, Crawford A, English A. et al. Synovial fluid mesenchymal stem cells in health and early osteoarthritis: detection and functional evaluation at the single-cell level. Arthritis Rheum 2008; 58 (06) 1731-1740
  • 10 Sakaguchi Y, Sekiya I, Yagishita K, Muneta T. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum 2005; 52 (08) 2521-2529
  • 11 McCarty WJ, Cheng JC, Hansen BC. et al. The biophysical mechanisms of altered hyaluronan concentration in synovial fluid after anterior cruciate ligament transection. Arthritis Rheum 2012; 64 (12) 3993-4003
  • 12 Matsukura Y, Muneta T, Tsuji K, Koga H, Sekiya I. Mesenchymal stem cells in synovial fluid increase after meniscus injury. Clin Orthop Relat Res 2014; 472 (05) 1357-1364
  • 13 Harris L, Vangsness Jr CT. Mesenchymal stem cell levels of human spinal tissues. Spine 2018; 43 (09) E545-E550
  • 14 Jones EA, English A, Henshaw K. et al. Enumeration and phenotypic characterization of synovial fluid multipotential mesenchymal progenitor cells in inflammatory and degenerative arthritis. Arthritis Rheum 2004; 50 (03) 817-827
  • 15 Dominici M, Le Blanc K, Mueller I. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8 (04) 315-317
  • 16 De Bari C, Dell'Accio F, Tylzanowski P, Luyten FP. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 2001; 44 (08) 1928-1942
  • 17 Fülber J, Maria DA, da Silva LCLC, Massoco CO, Agreste F, Baccarin RYA. Comparative study of equine mesenchymal stem cells from healthy and injured synovial tissues: an in vitro assessment. Stem Cell Res Ther 2016; 7 (01) 35
  • 18 Morito T, Muneta T, Hara K. et al. Synovial fluid-derived mesenchymal stem cells increase after intra-articular ligament injury in humans. Rheumatology (Oxford) 2008; 47 (08) 1137-1143
  • 19 Zayed M, Caniglia C, Misk N, Dhar MS. Donor-matched comparison of chondrogenic potential of equine bone marrow- and synovial fluid-derived mesenchymal stem cells: implications for cartilage tissue regeneration. Front Vet Sci 2017; 3: 121
  • 20 Lee W-J, Hah Y-S, Ock S-A. et al. Cell source-dependent in vivo immunosuppressive properties of mesenchymal stem cells derived from the bone marrow and synovial fluid of minipigs. Exp Cell Res 2015; 333 (02) 273-288
  • 21 de Sousa EB, Casado PL, Moura Neto V, Duarte ME, Aguiar DP. Synovial fluid and synovial membrane mesenchymal stem cells: latest discoveries and therapeutic perspectives. Stem Cell Res Ther 2014; 5 (05) 112
  • 22 Gómez R. Pathological anatomy of the synovial membrane [in Spanish]. Rev Esp Reum Enferm Osteoartic 1970; 13 (08) 491-493
  • 23 Iwanaga T, Shikichi M, Kitamura H, Yanase H, Nozawa-Inoue K. Morphology and functional roles of synoviocytes in the joint. Arch Histol Cytol 2000; 63 (01) 17-31
  • 24 Wasilko SM, Tourville TW, DeSarno MJ. et al. Relationship between synovial fluid biomarkers of articular cartilage metabolism and the patient's perspective of outcome depends on the severity of articular cartilage damage following ACL trauma. J Orthop Res 2016; 34 (05) 820-827
  • 25 Dowthwaite GP, Bishop JC, Redman SN. et al. The surface of articular cartilage contains a progenitor cell population. J Cell Sci 2004; 117 (Pt 6): 889-897
  • 26 Bravo B, Argüello JM, Gortazar AR, Forriol F, Vaquero J. Modulation of gene expression in infrapatellar fat pad-derived mesenchymal stem cells in osteoarthritis. Cartilage 2018; 9 (01) 55-62
  • 27 Caplan AI. All MSCs are pericytes?. Cell Stem Cell 2008; 3 (03) 229-230
  • 28 Crisan M, Yap S, Casteilla L. et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 2008; 3 (03) 301-313
  • 29 Nombela-Arrieta C, Ritz J, Silberstein LE. The elusive nature and function of mesenchymal stem cells. Nat Rev Mol Cell Biol 2011; 12 (02) 126-131
  • 30 Haywood L, Walsh DA. Vasculature of the normal and arthritic synovial joint. Histol Histopathol 2001; 16 (01) 277-284
  • 31 Klein TJ, Malda J, Sah RL, Hutmacher DW. Tissue engineering of articular cartilage with biomimetic zones. Tissue Eng Part B Rev 2009; 15 (02) 143-157
  • 32 Alsalameh S, Amin R, Gemba T, Lotz M. Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis Rheum 2004; 50 (05) 1522-1532
  • 33 Williams R, Khan IM, Richardson K. et al. Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage. PLoS One 2010; 5 (10) e13246
  • 34 Grogan SP, Miyaki S, Asahara H, D'Lima DD, Lotz MK. Mesenchymal progenitor cell markers in human articular cartilage: normal distribution and changes in osteoarthritis. Arthritis Res Ther 2009; 11 (03) R85
  • 35 Lotz MK, Otsuki S, Grogan SP, Sah R, Terkeltaub R, D'Lima D. Cartilage cell clusters. Arthritis Rheum 2010; 62 (08) 2206-2218
  • 36 Mohamed-Ahmed S, Fristad I, Lie SA. et al. Adipose-derived and bone marrow mesenchymal stem cells: a donor-matched comparison. Stem Cell Res Ther 2018; 9 (01) 168
  • 37 Muraglia A, Cancedda R, Quarto R. Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. J Cell Sci 2000; 113 (Pt 7): 1161-1166
  • 38 Isobe Y, Koyama N, Nakao K. et al. Comparison of human mesenchymal stem cells derived from bone marrow, synovial fluid, adult dental pulp, and exfoliated deciduous tooth pulp. Int J Oral Maxillofac Surg 2016; 45 (01) 124-131
  • 39 Sekiya I, Ojima M, Suzuki S. et al. Human mesenchymal stem cells in synovial fluid increase in the knee with degenerated cartilage and osteoarthritis. J Orthop Res 2012; 30 (06) 943-949
  • 40 Park MS, Kim YH, Jung Y. et al. In situ recruitment of human bone marrow-derived mesenchymal stem cells using chemokines for articular cartilage regeneration. Cell Transplant 2015; 24 (06) 1067-1083
  • 41 Lee D-H, Sonn CH, Han S-B, Oh Y, Lee K-M, Lee S-H. Synovial fluid CD34 CD44+ CD90+ mesenchymal stem cell levels are associated with the severity of primary knee osteoarthritis. Osteoarthritis Cartilage 2012; 20 (02) 106-109
  • 42 Koyama N, Okubo Y, Nakao K, Osawa K, Fujimura K, Bessho K. Pluripotency of mesenchymal cells derived from synovial fluid in patients with temporomandibular joint disorder. Life Sci 2011; 89 (19-20): 741-747
  • 43 Kim YS, Lee HJ, Yeo JE, Kim YI, Choi YJ, Koh YG. Isolation and characterization of human mesenchymal stem cells derived from synovial fluid in patients with osteochondral lesion of the talus. Am J Sports Med 2015; 43 (02) 399-406
  • 44 Hatakeyama A, Uchida S, Utsunomiya H. et al. Isolation and characterization of synovial mesenchymal stem cell derived from hip joints: a comparative analysis with a matched control knee group. Stem Cells Int 2017; 2017: 9312329
  • 45 Garcia J, Wright K, Roberts S. et al. Characterisation of synovial fluid and infrapatellar fat pad derived mesenchymal stromal cells: the influence of tissue source and inflammatory stimulus. Sci Rep 2016; 6 (01) 24295
  • 46 Jorgenson KD, Hart DA, Krawetz R, Sen A. Production of adult human synovial fluid-derived mesenchymal stem cells in stirred-suspension culture. Stem Cells Int 2018; 2018: 8431053
  • 47 De Schauwer C, Meyer E, Van de Walle GR, Van Soom A. Markers of stemness in equine mesenchymal stem cells: a plea for uniformity. Theriogenology 2011; 75 (08) 1431-1443
  • 48 Neybecker P, Henrionnet C, Pape E. et al. In vitro and in vivo potentialities for cartilage repair from human advanced knee osteoarthritis synovial fluid-derived mesenchymal stem cells. Stem Cell Res Ther 2018; 9 (01) 329
  • 49 Jia Z, Liu Q, Liang Y. et al. Repair of articular cartilage defects with intra-articular injection of autologous rabbit synovial fluid-derived mesenchymal stem cells. J Transl Med 2018; 16 (01) 123
  • 50 Zayed M, Newby S, Misk N, Donnell R, Dhar M. Xenogenic implantation of equine synovial fluid-derived mesenchymal stem cells leads to articular cartilage regeneration. Stem Cells Int 2018; 2018: 1073705
  • 51 Altaie A, Baboolal TG, Wall O, Jones E, McGonagle D. Platelet lysate enhances synovial fluid multipotential stromal cells functions: implications for therapeutic use. Cytotherapy 2018; 20 (03) 375-384
  • 52 Prado AAF, Favaron PO, da Silva LCLC, Baccarin RYA, Miglino MA, Maria DA. Characterization of mesenchymal stem cells derived from the equine synovial fluid and membrane. BMC Vet Res 2015; 11 (01) 281
  • 53 Chiang C-W, Chen W-C, Liu H-W, Chen C-H. Application of synovial fluid mesenchymal stem cells: platelet-rich plasma hydrogel for focal cartilage defect. J Exp Clin Med 2014; 6 (04) 118-124
  • 54 Nadri S, Soleimani M, Hosseni RH, Massumi M, Atashi A, Izadpanah R. An efficient method for isolation of murine bone marrow mesenchymal stem cells. Int J Dev Biol 2007; 51 (08) 723-729
  • 55 Li Q, Zhang X, Peng Y. et al. Comparison of the sorting efficiency and influence on cell function between the sterile flow cytometry and immunomagnetic bead purification methods. Prep Biochem Biotechnol 2013; 43 (02) 197-206
  • 56 Baddoo M, Hill K, Wilkinson R. et al. Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. J Cell Biochem 2003; 89 (06) 1235-1249
  • 57 Soleimani M, Nadri S. A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nat Protoc 2009; 4 (01) 102-106
  • 58 Elschenbroich S, Kim Y, Medin JA, Kislinger T. Isolation of cell surface proteins for mass spectrometry-based proteomics. Expert Rev Proteomics 2010; 7 (01) 141-154
  • 59 Rodrigues GMC, Rodrigues CAV, Fernandes TG, Diogo MM, Cabral JMS. Clinical-scale purification of pluripotent stem cell derivatives for cell-based therapies. Biotechnol J 2015; 10 (08) 1103-1114
  • 60 Hu P, Zhang W, Xin H, Deng G. Single cell isolation and analysis. Front Cell Dev Biol 2016; 4: 116
  • 61 Jia Z, Liang Y, Xu X. et al. Isolation and characterization of human mesenchymal stem cells derived from synovial fluid by magnetic-activated cell sorting (MACS). Cell Biol Int 2018; 42 (03) 262-271
  • 62 Li J, Huang Y, Song J. et al. Cartilage regeneration using arthroscopic flushing fluid-derived mesenchymal stem cells encapsulated in a one-step rapid cross-linked hydrogel. Acta Biomater 2018; 79: 202-215
  • 63 Baboolal TG, Mastbergen SC, Jones E, Calder SJ, Lafeber FPJG, McGonagle D. Synovial fluid hyaluronan mediates MSC attachment to cartilage, a potential novel mechanism contributing to cartilage repair in osteoarthritis using knee joint distraction. Ann Rheum Dis 2016; 75 (05) 908-915
  • 64 Nakamura T, Sekiya I, Muneta T. et al. Arthroscopic, histological and MRI analyses of cartilage repair after a minimally invasive method of transplantation of allogeneic synovial mesenchymal stromal cells into cartilage defects in pigs. Cytotherapy 2012; 14 (03) 327-338
  • 65 Ozeki N, Muneta T, Koga H. et al. Not single but periodic injections of synovial mesenchymal stem cells maintain viable cells in knees and inhibit osteoarthritis progression in rats. Osteoarthritis Cartilage 2016; 24 (06) 1061-1070
  • 66 van Buul GM, Siebelt M, Leijs MJC. et al. Mesenchymal stem cells reduce pain but not degenerative changes in a mono-iodoacetate rat model of osteoarthritis. J Orthop Res 2014; 32 (09) 1167-1174
  • 67 Chang YH, Wu KC, Liu HW, Chu TY, Ding DC. Human umbilical cord-derived mesenchymal stem cells reduce monosodium iodoacetate-induced apoptosis in cartilage. Ci Ji Yi Xue Za Zhi 2018; 30 (02) 71-80
  • 68 Liu W, Sun Y, He Y. et al. IL-1β impedes the chondrogenic differentiation of synovial fluid mesenchymal stem cells in the human temporomandibular joint. Int J Mol Med 2017; 39 (02) 317-326
  • 69 Inoue M, Muneta T, Ojima M. et al. Inflammatory cytokine levels in synovial fluid 3, 4 days postoperatively and its correlation with early-phase functional recovery after anterior cruciate ligament reconstruction: a cohort study. J Exp Orthop 2016; 3 (01) 30
  • 70 Barrachina L, Remacha AR, Romero A. et al. Inflammation affects the viability and plasticity of equine mesenchymal stem cells: possible implications in intra-articular treatments. J Vet Sci 2017; 18 (01) 39-49
  • 71 Djouad F, Fritz V, Apparailly F. et al. Reversal of the immunosuppressive properties of mesenchymal stem cells by tumor necrosis factor α in collagen-induced arthritis. Arthritis Rheum 2005; 52 (05) 1595-1603
  • 72 Huang Y-Z, Xie H-Q, Silini A. et al. Mesenchymal stem/progenitor cells derived from articular cartilage, synovial membrane and synovial fluid for cartilage regeneration: current status and future perspectives. Stem Cell Rev Rep 2017; 13 (05) 575-586