CC BY-NC-ND 4.0 · Ann Natl Acad Med Sci 2017; 53(04): 234-237
DOI: 10.1055/s-0040-1712812
Mini Review

Biosensor Designs for Platelet-derived Microparticles Analysis

Jyotsna Kailashiya
Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP.
› Institutsangaben

ABSTRACT

Platelet-derived microparticles (PMPs) are often used as marker of platelet activation and their count in blood has been found to be significantly associated with many diseases like myocardial infarction, stroke, venous thrombo-embolism etc. PMPs have been proposed as potential biomarkers for these conditions. Biosensors are newer analytical tools, being developed for convenient and cost effective analysis. For PMPs analysis, biosensors offer many advantages over conventional analysis techniques. This mini review compiles designs and techniques of reported biosensors based on antibody capturing for analysis of PMPs.



Publikationsverlauf

Artikel online veröffentlicht:
08. Mai 2020

© .

Thieme Medical and Scientific publishers private Ltd.
A-12, Second Floor, Sector -2, NOIDA -201301, India

 
  • References

  • 1 Hayasaka K, Moriyama T, Chiba H, Matsuno K (2006). Advancement of platelet activation measurement: focusing on platelet-derived microparticle measurement. Rinsho Byori 54(3): 250-255.
  • 2 Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ (1999). Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 94(11): 3791-3799.
  • 3 Nieuwland R, Sturk A (2002). Platelet-derived microparticles. Platelets: 255-262.
  • 4 Italiano JE Jr, Mairuhu AT, Flaumenhaft R (2010). Clinical relevance of microparticles from platelets and megakaryocytes. Curr Opin Hematol 17(6): 578-584.
  • 5 Aatonen MT, Ohman T, Nyman TA, Laitinen S, Gronholm M, Siljander PR (2014). Isolation and characterization of platelet-derived extracellular vesicles. J Extracell Vesicles 3(1).
  • 6 Morel O, Morel N, Freyssinet JM, Toti F (2008). Platelet microparticles and vascular cells interactions: a checkpoint between the haemostatic and thrombotic responses. Platelets 19(1): 9-23.
  • 7 Vajen T, Mause SF, Koenen RR (2015). Microvesicles from platelets: novel drivers of vascular inflammation. Thromb Haemost 114(2): 228-236.
  • 8 Todorova D, Simoncini S, Lacroix R, Sabatier F, Dignat-George F (2017). Extracellular Vesicles in Angiogenesis. Circ Res 120(10): 1658-1673.
  • 9 Woth G, Tokes-Fuzesi M, Magyarlaki T, Kovacs GL, Vermes I, Muhl D (2012). Activated platelet-derived microparticle numbers are elevated in patients with severe fungal (Candida albicans) sepsis. Ann Clin Biochem 49: 554-560.
  • 10 Kailashiya J, Singh N, Singh SK, Agrawal V, Dash D (2015). Graphene oxide-based biosensor for detection of platelet-derived microparticles: a potential tool for thrombus risk identification. Biosens Bioelectron 65: 274-280.
  • 11 Bucciarelli P, Martinelli I, Artoni A, et al (2012). Circulating microparticles and risk of venous thromboembolism. Thromb Res 129(5): 591-597.
  • 12 Campello E, Spiezia L, Radu CM, et al (2015). Circulating microparticles in umbilical cord blood in normal pregnancy and pregnancy with preeclampsia. Thromb Res 136(2): 427-431.
  • 13 Fortin PR, Cloutier N, Bissonnette V, et al (2016). Distinct Subtypes of Microparticle-containing Immune Complexes Are Associated with Disease Activity, Damage, and Carotid Intimamedia Thickness in Systemic Lupus Erythematosus. J Rheumatol 43(11): 2019-2025.
  • 14 Marques FK, Campos FM, Filho OA, Carvalho AT, Dusse LM, Gomes KB (2012). Circulating microparticles in severe preeclampsia. Clinica chimica acta. Intl J Clin Chem 414: 253-258.
  • 15 Sun C, Zhao WB, Chen Y, Hu HY (2016). Higher Plasma Concentrations of Platelet Microparticles in Patients With Acute Coronary Syndrome: a Systematic Review and Meta-analysis. Can J Cardiol 32(11): 1321-1325.
  • 16 Michelsen AE, Brodin E, Brosstad F, Hansen JB (2008). Increased level of platelet microparticles in survivors of myocardial infarction. Scand J Clin Lab Invest 68(5): 386-392.
  • 17 Kafian S, Mobarrez F, Wallen H, Samad B (2015). Association between platelet reactivity and circulating platelet-derived microvesicles in patients with acute coronary syndrome. Platelets 26(5): 467-473
  • 18 Ayers L, Kohler M, Harrison P, et al (2011). Measurement of circulating cell-derived microparticles by flow cytometry: sources of variability within the assay. Thromb Res 127(4): 370-377.
  • 19 Maduraiveeran G, Sasidharan M, Ganesan V (2018). Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens Bioelectron 103: 113-129.
  • 20 Cho IH, Lee J, Kim J, et al (2018). Current Technologies of Electrochemical Immunosensors: Perspective on Signal Amplification. Sensors 18(1): 207.
  • 21 Ibau C, Md Arshad MK, Gopinath SCB (2017). Current advances and future visions on bioelectronic immunosensing for prostate-specific antigen. Biosens Bioelectron 98: 267-284.
  • 22 Henares TG, Mizutani F, Hisamoto H (2008). Current development in microfluidic immunosensing chip. Anal Chim Acta 611(1): 17-30.
  • 23 Singh P, Srivastava S, Chakrabarti P, Singh SK (2017). Nanosilica based electrochemical biosensor: A novel approach for the detection of platelet-derived microparticles. Sensors and Actuators B: Chemical 240: 322-329.
  • 24 Obeid S, Ceroi A, Mourey G, Saas P, Elie-Caille C, Boireau W (2017). Development of a NanoBioAnalytical platform for "onchip" qualification and quantification of platelet-derived microparticles. Biosens Bioelectron 93: 250-259.